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ABSTRACT 3D reconstruction of real physical environments can be a challenging task, often requiring depth cameras 

such as LIDAR or RGB-D to capture the necessary depth information. However, this method is resource-intensive and 

expensive. To counter this problem, monocular 3D reconstruction has emerged as a research area of interest, leveraging 

deep learning techniques to reconstruct 3D environments using only sequences of RGB images, thus reducing the need for 

specialized hardware. Existing research has primarily focused on environments with good lighting conditions, leaving a 

gap in research for environments with poor visibility. In response, we propose a solution that addresses this limitation by 

enhancing the visibility of images taken in poorly visible environments. These enhanced images are then used for 3D 

reconstruction, resulting in the extraction of more features and producing a 3D mesh with improved visibility. Our solution 

employs a Generative Adversarial Network (GAN) to enhance the images, providing a complete pipeline from inputting 

images with poor visibility to generating an output mesh file for 3D reconstruction. Through visualization of these mesh 

files, we observe that our solution improves the lighting conditions of the environment, resulting in a more detailed and 

readable 3D reconstruction. 

 

INDEX TERMS monocular 3D reconstruction, domain adaptation, GAN, poor visibility conditions 

 

 

 

I. INTRODUCTION 

Three-dimensional reconstruction aims to recover the 

geometric structure of a scene or an object by leveraging the 

visual cues that can be observed on the entity such as 

perspective, shading, and texture. Along with the appropriate 

numerical processes, 3D reconstruction algorithms estimate the 

spatial layout of objects and their relative positions from these 

visual cues. These reconstructed 3D models act as a bridge 

between the physical and digital worlds; thus, they are 

applicable in fields such as autonomous navigation, robotics, 

augmented reality and virtual reality.  

 

Recently, 3D reconstruction mechanisms have rapidly 

progressed with the increasing availability of visual data, 

improved algorithms, and the availability of powerful 

computational resources. Among the various approaches to 

3D reconstruction, monocular 3D reconstruction stands out as 

an area of intense research interest. 

 

Traditionally, 3D reconstruction methods have relied on depth 

data captured by sensors such as LIDAR or RGB-D cameras, 

or stereo vision or multi-view geometry to infer depth 

information. However, these approaches often require 

specialized hardware (such as stereo cameras) and precise 

camera calibration, limiting their practicality. 

 

In monocular 3D reconstruction, however, the aim is to extract 

the structural information of a scene from single view 2D 

images. The challenge lies in extracting depth information from 

a single viewpoint, where the loss of stereo cues makes the task 

inherently ill-posed. Various techniques have been explored to 

address this challenge throughout the past few years, and 

methods such as structure from motion (SfM) and visual 

odometry (VO) have yielded acceptable results. The latest 

trend that has emerged is the utilization of deep learning based 

methods for the task of 3D reconstruction. Convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) 

have been employed to predict depth maps directly from single 

images. 

 

Most of the explored deep learning based mechanisms for 3D 

reconstruction have been evaluated on datasets which present 

well-illuminated, high resolution daytime images of scenes [1, 

2], thus the visual cues are easily perceivable even by the 

human eye. However, in practical scenarios the visibility of 

scenes could be hindered by poor illumination or non-uniform 

lighting by multiple light sources. For example, an outdoor 

scene might be poorly visible due to rainy, foggy weather 

conditions.  

 

A night-time outdoor scenario will consist of non- uniform 

lighting or will have low visibility in general. Due to these 

conditions, the 3D reconstruction models have difficulty in 

understanding the scene and rendering a proper 3D model. 

Therefore, these environments are referred to as complex 

environments [3]. Since the existing models have been 

developed with the assumption of consistent illumination and 

static scenarios, they have not been evaluated against such 

complex environments. 
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To address the above limitations, in this work we are proposing 

a 3D reconstruction module which can reconstruct a 3D model 

of environments in challenging conditions such as: 

 

• Low lighting / visibility (e.g: Night-time) 

• Multiple light sources demonstrating inconsistent 

lighting conditions (e.g: a night-time image of an 

urban road with vehicle lights / streetlights), 

 

from a sequence of monocular images. In our proposed method, 

a monocular sequence of images which depict a complex 

environment will be converted into a more visible image 

through a domain adaptation network. Our focus is on night- 

time outdoor images and poorly lit indoor images; thus, the 

conversion will enhance the visibility of these images. The 

enhanced images will be fed into a separate 3D reconstruction 

model which will produce the required 3D data. The domain 

adaptation network is based on a Generative Adversarial 

Network (GAN) called AU-GAN [4] which converts the 

domain from night-time to daytime and the 3D reconstruction 

model is based on the state-of-the-art 3D reconstruction model 

SimpleRecon [5]. The overall network has been trained on both 

indoor and outdoor data with poor visibility conditions, 

enabling higher performance even in environments such as the 

above-mentioned complex ones. 

 

Through this research, we have explored the following research 

objectives: 

• RO1: Developing a framework (A basic structure for 

a system) that can reconstruct a 3D scene from an 

image sequence of a poorly visible environment. 

• RO2: Enhance the applicability of the 3D 

reconstruction framework for a wider range of 

applications. 

 

II. LITERATURE REVIEW 

 

A. Domain Adaptation with GANs 

Generative Adversarial Networks (GANs), particularly Deep 

Convolutional GANs (DCGANs), have significantly advanced 

image generation in artificial intelligence. DCGANs utilize 

deep convolutional neural networks to capture intricate features 

and spatial relationships, enhancing image realism. They have 

demonstrated their capability in learning hierarchical 

representations from object parts to full scenes, using 

techniques like batch normalization to stabilize training and 

mitigate issues like mode collapse. These networks, trained on 

large-scale image datasets such as Imagenet-1k, are adept at 

generating high-quality visual samples. A critical application 

of GANs is image-to-image translation, transforming an input 

image into a corresponding output while preserving essential 

visual characteristics. This task, essential for image 

enhancement, style transfer, synthesis, and editing, can be 

approached in supervised, unsupervised, or semi-supervised 

ways. Supervised methods, like pix2pix [6], require paired 

examples, whereas unsupervised methods, such as CycleGAN 

[7] and UNIT [8], aim to learn the mapping without explicit 

supervision, simplifying data collection. UNIT (Unsupervised 

Image-to-image Translation) introduces a shared-latent space 

assumption, suggesting that images from different domains can 

be mapped to a common latent representation. This approach 

uses a combination of GANs and variational autoencoders 

(VAEs) to model each image domain, incorporating weight- 

sharing and adversarial training to enforce the shared-latent 

space. The UNIT framework also addresses domain adaptation, 

achieving high accuracy on benchmark datasets. By integrating 

the cycle-consistency constraint, UNIT ensures a robust 

mapping between domains, facilitating realistic image 

translations in various challenging tasks, such as street scene 

transformations, synthetic to real image translation, and facial 

attribute modifications. The framework demonstrates 

proficiency in handling diverse and complex image translation 

tasks, producing visually realistic results even in scenarios with 

substantial domain differences. 

 

Domain translation between challenging conditions like night- 

time and standard daytime poses significant challenges in 

unsupervised or weakly-supervised learning due to the 

impracticality of obtaining precisely aligned ground-truth 

image pairs, especially in dynamic driving scenes with 

numerous moving objects. Visual variations across different 

weather conditions, such as vehicles and streetlamps, along 

with global texture differences like raindrops and regional 

changes such as reflections on wet roads, further complicate the 

problem. Despite these variations, a commonality in semantic 

and geometrical aspects exists between adverse and normal 

domains. The primary objective of a general night-to-day 

domain adaptation model is to disentangle invariant and variant 

features without relying on supervision or task-specific 

knowledge. 

 

Optimal task-agnostic image translation should preserve image 

content at all scale levels, from overall scene layout to intricate 

object details, while dynamically adapting to varying 

illumination and weather conditions. CycleGAN-based models 

such as [7] demonstrate effectiveness in altering global 

conditions but often fail to preserve local feature details. 

ForkGAN [9] addresses this limitation by coupling two 

encoding spaces of CycleGAN to retain invariant information 

in both domains. ForkGAN enforces domain agnosticism by 

ensuring that encoded features do not reveal their domain of 

origin, introducing a 'Fork' branch to assess the sufficiency of 

encoded information for reconstructing original image data in 

both domains. 

 

ForkGAN introduces a fork-shaped architecture for image 

translation using unpaired data, featuring one encoder and two 

decoders. For example, in night-to-day translation, a night-time 

image is encoded to extract a domain-invariant representation, 

which is then processed by two decoders: one reconstructs the 

original night-time image, and the other generates a plausible 

daytime image. Adversarial training and a perceptual loss 

ensure content representation consistency between the original 

and translated images. ForkGAN's architecture enhances image 

recognition tasks in both domains by ensuring retention of 

essential information. 
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Experiments using the Alderley and BDD100K [10] datasets 

demonstrate ForkGAN's efficacy. The Alderley dataset, 

designed for the SeqSLAM algorithm [11], includes images 

captured along the same route under different conditions, while 

the BDD100K dataset contains annotated high-resolution 

images from diverse cities and environmental conditions. 

ForkGAN achieves superior or comparable results to methods 

like UNIT [8], CycleGAN [7], MUNIT [12], and StarGAN [13] 

in localization, semantic segmentation, and object detection 

tasks. 

 

Conventional symmetric architectures like those in CycleGAN- 

based approaches struggle with adverse domain translation due 

to significant domain gaps. Rainy night images, with artifacts, 

blur, and reflections, necessitate an asymmetric approach. 

AUGAN [4] proposes an asymmetric architecture with a 

feature transfer network between the encoder and decoder, 

enhancing encoded features from adverse domain images.  

 

An asymmetric feature matching loss aids in disentangling 

domain-invariant from domain-specific features. AUGAN also 

introduces an uncertainty-aware cycle-consistency loss to 

mitigate artifacts in adverse domains, penalizing regions based 

on a confidence map. 

 

AUGAN’s asymmetric framework excels in adverse weather 

translation tasks on the Alderley and BDD100K datasets. It 

consistently produces superior visual results, outperforming 

models like CycleGAN [7], TodayGAN [13], and ForkGAN 

[9], especially in dark or blurry areas.  

 

AUGAN's robust performance is attributed to its innovative 

approach to feature enhancement and disentanglement, 

ensuring well-preserved objects and high-quality 

transformations across various challenging conditions. 

 

B. 3D Reconstruction Methods 

When considering 3D reconstruction techniques, including 

stereo reconstruction, multi-view stereo (MVS), volumetric 

reconstruction, structure from motion (SfM), and deep 

learning-based methods have been extensively studied. 

Recently, the application of sparse truncated signed distance 

function (TSDF) for 3D reconstruction has shown enhanced 

performance and accuracy. 

 

NeuralRecon [14] is a neural network that processes a 

sequence of images from a moving camera and their 

corresponding camera poses to generate a 3D representation of 

the scene as a TSDF volume. It reconstructs and fuses sparse 

TSDF volumes incrementally using sparse 3D convolutions 

and gated recurrent units (GRUs). Unlike methods that 

estimate single-view depth maps and fuse them later, 

NeuralRecon directly reconstructs local surfaces for each 

video fragment, ensuring global consistency and eliminating 

redundant computations.  

 

 

This results in dense, accurate, and coherent 3D scene 

geometry while maintaining real-time performance. 

NeuralRecon captures both local smoothness and global shape 

priors, achieving real-time performance at 33 key frames per 

second, significantly faster than previous methods like Atlas 

[15]. 

 

TransformerFusion [16] employs a transformer-based 

approach for 3D scene reconstruction by fusing monocular 

RGB video frames into a volumetric feature grid. The 

transformer architecture allows the network to attend to the 

most relevant image frames for each 3D location, enhancing 

surface reconstruction accuracy. The coarse-to-fine 

formulation of transformer-based feature fusion improves both 

reconstruction performance and runtime. FineRecon [17] 

addresses the challenge of coarse and detail-lacking 3D 

reconstructions with a depth-aware, end-to-end network. By 

using posed RGB images and a depth-prediction network to 

guide back-projection, FineRecon achieves significant 

improvements across various depth and 3D reconstruction 

metrics, outperforming other state-of-the-art methods. 

However, its computational efficiency is lower compared to 

NeuralRecon, and the requirement for camera poses adds 

complexity to its usage.  

 

The SimpleRecon approach [5] presents a novel method for 

3D indoor scene reconstruction by enhancing multi-view depth 

prediction quality instead of direct 3D volumetric 

reconstruction.  

 

This method integrates keyframe and geometric metadata into 

the 4D cost volume, allowing for informed depth plane 

scoring. It employs a 2D Convolutional Neural Network 

(CNN) that leverages strong image priors and geometric 

losses, enabling real-time, low- memory reconstruction. 

SimpleRecon's results demonstrate a considerable lead over 

current state-of-the-art methods for depth estimation, showing 

close or better performance on standard datasets like ScanNet 

[1] and 7-Scenes. 

 

III. METHODOLOGY 

 

A. Method Overview 

The proposed method consists of two main components: a 

generative adversarial network (GAN) that can transform 

images that are taken in the presence of challenging lighting 

conditions such as poor visibility or artificial lighting at night 

(referred to as "night images") into images with clear contrast 

and color range (referred to as "day images"), and a neural 

network that can reconstruct 3D surfaces from monocular day 

image sequences. 
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Figure 1 Architecture of Our Implementation 
 

 

The first component is a GAN that can learn to map night 

images to day images in an unsupervised manner. The GAN 

consists of two networks: a generator and a discriminator. The 

generator tries to produce realistic day images from night 

images, while the discriminator tries to distinguish between 

real and fake day images. The GAN is trained on a large dataset 

of unpaired night and day images, both indoor and outdoor, 

collected from various sources. 

As there is no established dataset for this task, a dataset created 

comprising of natural night-time/poorly visible environments 

was needed. The GAN is expected to capture the poor lighting 

conditions and color variations in night scenes and to generate 

natural-looking day images that preserve the scene geometry 

and semantics. 

 

The second component is a 3D reconstruction model 

comprising of a neural network that can reconstruct 3D 

surfaces from a sequence of monocular images. The model 

takes as input a sequence of images captured by a moving 

camera and outputs a 3D representation of the scene in the form 

of mesh reconstruction. 

 

The final step is to combine the two components to achieve 3D 

reconstruction from monocular video of complex 

environments. The idea is to first apply the GAN to convert the 

night video into a day video, and then feed the day video to the 

neural network to obtain the 3D reconstruction. The advantage 

of this approach is that it leverages the existing methods for 

reconstructing day scenes, which are more mature and robust 

than the methods for reconstructing night scenes and avoids the 

challenges of dealing with complex lighting and shadows in 

night scenes. 

B. Model Selection 

For the base models of the 2 main components mentioned 

above, we tested several existing models and selected the 

following: 

 

• Domain adaptation network - AU-GAN [4] 

• 3D reconstruction model - SimpleRecon [5] 

For the domain adaptation network, we tested ForkGAN [9], 

CycleGAN [7], AU-GAN [4], and UNIT [7]. Out of them, we 

have selected AU-GAN as the base model for the domain 

adaptation network. 

Unlike symmetric approaches like ForkGAN [9], which 

struggle with the pronounced domain gap between standard and 

adverse weather conditions, AUGAN introduces a novel 

framework adept at handling rainy night images replete with 

artifacts, blur, and reflections. By incorporating a feature 

transfer network exclusively within the generator responsible 

for adverse domain translation, AUGAN enhances and 

disentangles features crucial for domain translation without 

compromising on local object details. Moreover, its 

incorporation of an uncertainty-aware cycle consistency loss, 

inspired by uncertainty modeling, ensures better preservation 

of details in dark or blurry regions, addressing a common 

shortfall of other models like CycleGAN and ForkGAN. 

Through comprehensive qualitative and quantitative 

evaluations, AUGAN consistently outperforms its 

counterparts, showcasing superior visual quality and 

robustness in adverse weather translation tasks across diverse 

outdoor datasets, thereby solidifying its status as the leading 

choice for night-to-day conversion endeavors. 

 

For the base of the 3D reconstruction model, the other 

frameworks tested were NeuralRecon [14], TransformerFusion 
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[16], and FineRecon [17]. The SimpleRecon model is a 

comparatively newer 3D reconstruction model which provided 

excellent results in a small amount of time. It outperformed the 

other 3 models in reliability and efficiency, although there is a 

small tradeoff on accuracy, as FineRecon has provided better 

accuracy. However, FineRecon model takes up a considerably 

larger amount of time and computational resources than 

SimpleRecon to produce the final result. Therefore, after 

carefully considering our requirements and cost-effectiveness, 

SimpleRecon was selected as the base model for the 3D 

reconstruction component of our pipeline. 

 

After selecting the base models, we made several modifications 

to the domain adaptation model to produce a convincing 

daytime image, when a night-time image is input. One 

significant improvement involved architectural adjustments of 

the base AUGAN model, such as the adoption of demodulated 

convolutions and the use of upsample-plus-convolution 

operations instead of transposed convolutions, which were 

instrumental in stabilizing training and mitigating artifacts 

commonly associated with GANs, such as droplet and 

checkerboard artifacts. Furthermore, augmenting the training 

data, particularly with the BDD100K dataset [10], mitigated 

biases towards specific environmental features like trees and 

sky prevalent in the original dataset. This augmentation 

strategy aimed to enhance the model's ability to generalize 

across diverse environments and scenarios, addressing the 

second research objective we were aiming for. 

 

Through architectural refinements and data augmentation 

strategies, the model's robustness and applicability across 

various environmental conditions were improved, paving the 

way for more effective image-to-image translation tasks in both 

research and practical applications. 

 

C. Pipeline 

Figure 1 denotes the final architecture of our implementation. 

This method relies on the input from an iOS application called 

ios_logger which can capture a video whilst logging the motion 

information corresponding to the video frames. This 

application was introduced and utilized in NeuralRecon [14] 

for monocular video recording purposes. The captured video 

frames are extracted and fed into the domain adaptation model 

component, which would generate the frames with enhanced 

visibility. These generated images are next fed into the 3D 

reconstruction model component for the 3D reconstruction, 

along with the motion data captured earlier. This component 

outputs the 3D mesh file for the input image sequence. 

 

D. Datasets 

The research project necessitates datasets suitable for training 

and evaluating both a domain adaptation network and a 3D 

reconstruction model. Selection criteria were established, 

including the requirement for RGB-D images of real-world 

indoor/outdoor scenes with complex conditions, availability of 

camera pose data or related information, presence of sequential 

images with corresponding labels and semantics, and 

preference for minimal dynamic components. 

Despite thorough searching, no single dataset met all the 

criteria. However, three datasets were selected: 

• BDD100K [10]: Originally designed for autonomous 

driving algorithm evaluation, this dataset comprises 

over 100,000 videos with high-resolution images 

captured under various weather conditions and in 

night-time conditions. While it lacks some complex 

conditions, it offers diverse scenarios for certain tasks 

like object detection and semantic segmentation. 

 

• ScanNet [1]: Primarily used for indoor scene 

understanding, ScanNet provides RGB-D video data 

of indoor environments with annotations like 3D 

camera poses and semantic segmentations. Although 

it lacks complex conditions, its static environments 

align with the requirement for minimal dynamic 

components. 

 

• Custom Dataset: To address the absence of datasets 

for poorly lit indoor environments, a small custom 

dataset was created using an iPhone 15 Pro and the 

ios_logger app. This dataset captures indoor locations 

of a university during night-time, focusing on areas 

like hostels, study spaces, and parking lots. Some 

daytime captures were also included for comparison 

with night-time reconstructions, providing insights 

into differences between lighting conditions. 

 

Each dataset offers unique strengths and limitations, fulfilling 

specific criteria outlined for the research project. 

 

E. Implementation Details 

The training of the GAN and the implementation of the pipeline 

was done in 2 separate GCP VMs. Each GCP VM had a 

NVIDIA V100 GPU. As for the training time, it took around 

10 hours to train 1 epoch of the GAN model. The resolution of 

the images was downsized to 256 x 256 for training. Each 

epoch had more than 100,000 iterations. 

IV. RESULTS & DISCUSSION 

 

A. Domain Adaptation 

The Fréchet Inception Distance (FID), or FID score, introduced 

by Heusel et al. [18] improves the Inception Score. FID utilizes 

the Inception v3 model, specifically the final pooling layer 

before image classification, to capture important image 

features. By calculating activations for both real and generated 

images in this layer, FID forms multivariate Gaussian 

distributions. The Fréchet distance (Wasserstein-2 distance) 

measures the divergence between these distributions. A lower 

FID score indicates that generated images more closely match 

the statistical properties of real images, signifying higher 

fidelity. 

 
Table 1. FID-scores comparison 

Model Train 

Dataset 

Evaluation 

Dataset 

FID-Score 

Original 

AU-GAN 

bdd100k bdd100k 45.6886 

Original 

AU-GAN 

bdd100k Custom 

indoor 

dataset 

369.5709 

pt-AUGAN bdd100k bdd100k 120.9566 
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pt-AUGAN bdd100k- 

augmented 

bdd100k 113.7694 

pt-AUGAN bdd100k- 

augmented 

Custom 

indoor 

dataset 

180.9832 

 

The provided Table 1 shows that the original AU-GAN trained 

on the BDD100K dataset achieved an FID score of 45.6886 

when evaluated on both the BDD100K dataset itself and a 

custom indoor dataset. 

 

In contrast, the pt-AUGAN which is the improved model, 

consistently showed higher FID scores than the original AU- 

GAN. Specifically, when tested on the BDD100K dataset, the 

pt-AUGAN achieved an FID score of 120.9566, reflecting a 

decline in performance. However, when the pt-AUGAN was 

evaluated on an augmented version of the BDD100K dataset 

("bdd100k-augmented"), it performed slightly better, with an 

FID score of 113.7694. 

In summary, the pt-AUGAN exhibits mixed performance 

compared to the original AU-GAN. While there are some 

indications of improvement in certain scenarios, it also shows 

notable performance degradation in others. Further evaluation 

is necessary, especially regarding its performance on a wider 

range of datasets, and that currently remains as a future work. 

 

B. 3D Reconstruction 

We randomly picked 16 scans from the Scannet dataset [1] as 

the test set for evaluating our pipeline. Each of these scans 

represents an indoor environment image sequence, containing 

around 600-3000 images (the number of images vary). Table 2 

provides results obtained and the averaged values are provided 

in Table 3. 

The method of evaluation was to compare the 3D 

reconstruction from the night-time image sequence itself 

(without any domain adaptation), and the 3D reconstruction 

generated from our improved pipeline with domain adaptation. 

These 2 types of 3D reconstructions are referred to as ‘night- 

time mesh’ and ‘daytime mesh’ respectively. First, the night- 

time mesh was evaluated against the ground truth mesh, and the 

precision, recall, f-score metrics were obtained for it. Next, the 

same metrics were obtained for the daytime mesh, comparing 

it against the same ground truth mesh. This evaluation method 

provides a relative understanding of how well the 3D 

reconstruction could be done on a night-time environment (an 

environment in poorly visible conditions) as it is, and how 

much it could be improved by employing our solution instead. 

 
Table 2. 3D reconstruction evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 shows the averaged values of the above evaluation 

results. 

 
Table 3. Summary of 3D reconstruction evaluation 

 

Night-time mesh Day time mesh 

precision recall f-score precision recall f-score 

0.229 0.241 0.235 0.246 0.252 0.249 

 

From these results it can be concluded that there is relatively 

little accuracy improvement in the reconstructed meshes of our 

pipeline. There are various factors that affect these results as 

we have identified: 

• The density of the ground truth mesh and the density 

of the predicted mesh are vastly different. The ground 

truth mesh is an extremely dense reconstruction, 

whereas our method produces a comparatively sparse 

mesh. This could be the main reason affecting the low 

measurements of accuracy when it comes to the 

surface distance metrics. 

 

• The FID score of the GAN model is high due to the 

high resolution of the images and the unavailability of 

the two domains (night and day) of the same indoor 

environments. Although we retrained the model with 

new indoor environment images from the custom 

dataset, the amount of training data and time seems to 

be insufficient for the modified AU-GAN model to 

produce a convincing result. 

 

 

• Due to the lack of ground truth data, we converted an 

existing day-time image dataset into night-time 

images. The resulting night-time images, in some 

cases, were not passable as convincing captures of a 

night-time environment. The poor quality of these 

night-time images may have resulted in a poor-quality 

output of the predicted mesh. Table 4 shows visual 

results comparison. 

0257 0.173 0.183 0.178 0.248 0.276 0.261 

0303 0.318 0.317 0.318 0.246 0.233 0.239 

0325 0.339 0.346 0.343 0.288 0.306 0.296 

0428 0.176 0.190 0.182 0.162 0.157 0.159 

0642 0.243 0.261 0.252 0.298 0.311 0.304 

0715 0.165 0.176 0.171 0.149 0.143 0.146 

0725 0.231 0.239 0.235 0.214 0.212 0.213 

0737 0.215 0.213 0.214 0.300 0.301 0.301 

0746 0.299 0.311 0.305 0.273 0.278 0.275 

0761 0.201 0.220 0.210 0.249 0.252 0.251 

0780 0.183 0.180 0.182 0.225 0.227 0.226 

0795 0.159 0.148 0.153 0.177 0.194 0.185 

 

Scan 

scene 

no. 

Night-time mesh (w/o 

domain adaptation) 

Daytime mesh (with 

domain adaptation) 

precision recall f-score precision recall f-score 

0025 0.219 0.239 0.229 0.284 0.313 0.298 

0046 0.236 0.257 0.246 0.221 0.237 0.229 

0068 0.296 0.334 0 .313 0.366 0.333 0.349 

0167 0.220 0.251 0.235 0.237 0.272 0.253 
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Table 4. Visualization of 3D reconstructions 
 

Original 
Night-time 

reconstruction 

Reconstruction on 

our method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. FUTURE WORK 

One of the main improvements that can be made to our method 

is the fine tuning of the GAN component to be inclusive of 

night-time indoor environments. Although we attempted this 

improvement, the scale of our custom dataset was not sufficient 

for the model to produce a satisfactory result. This leads to the 

requirement of a dataset which includes images of night-time 

indoor environments and corresponding ground truth data. 

Also, using region-based spatial attention methods with the 

GAN will reduce the bias introduced by the dataset. 

To further elaborate, our suggestion would be to develop a 

dataset which has an equal distribution of image sequences of 

night-time and daytime environments, both indoor and outdoor. 

The same location must be captured in both high-visibility and 

low-visibility conditions using the exact same setup of 

cameras, along with the ground truth data. The dataset can be 

created by compiling a large number of such scans. If this 

dataset can be created, it would benefit the further training and 

evaluation tasks of our pipeline. 

 

The generated day-time images have artefacts in them, which 

is an additional noise that hinders the accuracy of the final 

output. These can be reduced by optimizing the GAN further 

with more experimentation. 

 

VI. CONCLUSION 

Monocular 3D reconstruction seeks to overcome the limitations 

posed by the need for specialized hardware and precise 

calibration, by extracting structural information from single 2D 

images, a task that is inherently ill-posed due to the loss of 

stereo cues. Recent advances in deep learning have 

significantly improved the performance of monocular depth 

estimation and 3D reconstruction. Despite these advancements, 

most existing deep learning-based methods have been trained 

and evaluated on datasets that assume well-illuminated, such as 

daytime environments with consistent lighting conditions. To 

address these limitations, our research proposes a novel 3D 

reconstruction framework capable of handling complex 

environments characterized by challenging lighting conditions. 

Our approach leverages a sequence of monocular images and 

utilizes a domain adaptation network to enhance image 

visibility before feeding them into a 3D reconstruction model. 

This method shows slight improvements against 3D 

reconstructions done on the captured night-time environment 

itself. However, our solution can be further improved with the 

availability of a night-time environment dataset which includes 

ground truth data. 

 

Our approach addresses the need for a more generalized and 

adaptable 3D reconstruction model. By training our system on 

diverse datasets that include both indoor and outdoor scenes 

with varying lighting conditions, we enhance its ability to 

generalize across different environments. This versatility is 

crucial for cost-effective applications in autonomous 

navigation, robotics, augmented reality, and virtual reality, 

where the ability to accurately reconstruct 3D environments in 

real-time under various conditions is essential. 
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