

381

ID 176

SQL Injection Detection and Prevention Solution for

Web Applications

GJM Ariyathilake1#, MHR Sandeepanie2 and PL Rupasinghe3

1Centre for Defence Research and Development, Sri Lanka
2 General Sir John Kotelawala Defence University, Sri Lanka
3 Sri Lanka Institute of Information Technology, Sri Lanka

#awert1232003@gmail.com

Abstract— Presently, the most highly used

method of global communication is web

applications. It is used for long-distance

communication, online marketing, health

services, research and development, distance

learning, e-banking and social media networks.

Since web applications are available for global

community with access for anyone at any time,

web applications are confronted with numerous

challenges that comprise of security issues,

specifically owing to web-based cyber-attacks.

The SQL injection attack is the most prevailing

global web-based cyber-attack, and it belongs to

high rank classifications. Because of the

increased number of global online services with

a high rate of cyber-attacks, SQL injection attacks

also are amplified rapidly. Most of the SQL

injection attacks are successful, due to lack of

proper validation. However, a successful SQL

injection attack highly interferes with integrity,

availability and confidentiality of the data in the

databases. Therefore, there is a vital global

requirement to overcome SQL injection attacks.

Towards overcoming predominant issues, a

periodically and continuously running PHP based

programme, which is able to identify patterns of

SQL injection attacks recorded in PHP Apache log

files, and is capable to block the identified

suspicious IP addresses was designed as the

adopted methodology. In this empirical research,

statistics of total suspicious IP addresses and

blacklisted IP addresses with their hitting counts

and time were obtained, while preventing access

of blacklisted IP addresses to the Apache web

server. The proposed solution facilitates for

continuous monitoring of suspicious activities,

while blocking vulnerable hosts using its IP

addresses automatically with securing web

servers from the SQL injection attack.

Keywords: SQL injection attacks, web

applications, communication

I. INTRODUCTION

Right now, the most highly used method of global

communication are web applications. Web

applications are used globally for long distance

communication, online marketing, health

services, research and development, distance

learning, e-banking and social media networks.

Ever since, the web applications are accessible

for the global community with having access for

anyone at any time, web applications confront

with numerous challenges comprising the

security issues, specifically owing to web based

cyber-attacks. Among various cyber-attacks, the

Structured Query Language (SQL) injection

attack is the most prevailing web based cyber-

attack globally, which belongs to high rank

classifications. In view of that, the line of codes

describe the basic SQL injection attack is as

follows:

The statement = "select * from customers where

name = '" + customerName + "';"

Above mentioned SQL code is created to pull up

all the records of the user specified “customer

name” from the table “customers”. Conversely, if

the "customerName" variable is crafted, which is

designed as specific way by one of the vulnerable

users, the SQL statements may perform more

other than the author intended. For instance,

setting the "customerName” variable using as

follows:

' OR '1'='1

or consuming comments even to block the rest

statements of the query (In here, mentioned 3

types of different SQL comments). All the lines

382

have a specified space in the end of the each of

three statements as follows:

i. 'OR '1'='1' --

ii. ' OR '1'='1' {

iii. ' OR '1'='1' /*

The above codes render one of the above

mentioned SQL statements by parent language as

follows:

i. select * from customers where name = '' or

'1'='1';

ii. select * from customers where name = '' or

'1'='1' -- ';

When these codes are to be consumed in an

authentication role procedure, then above

example could be utilized to force to get selection

of every field of data (*) from customers SQL

table, excluding one specified customer name as

the author intended, due to the evaluation of code

'1'='1' is normally always true. The above value

of "customerName" in the statement mentioned

below, would cause to deletion of the

"customers" table (SQL) as well as get selection

of all the data from the "customerinfo" table (in

essence that revealing the information regarding

every user), using user API that allows more sql

statements:

a'; DROP TABLE customers; SELECT * FROM

customerinfo WHERE 't' = 't

Such input renders the executing final SQL

statements as follows:

select * from customers where name = 'a';drop

table customers; select * from customerinfo

where 't' = 't';

To prevent SQL injection cyber-attacks, web

application developers may use specific tools for

check availability and prevention of SQL injection

attacks. At present, such tools are WAF (Web

Application Firewall), “Positive Tainting”,

“SQLrand”, “CSSE”, “CANDID” etc.

Nevertheless, the web application security is

extremely vital in preventing SQL injection

attacks. Because of the improper security coding

practices, the developers are subjected to

numerous cyber-attacks, particularly with

malicious source code injecting cyber-attacks.

Further, several improper and insecure coding

practices are frequently used with low

encryption, which are subjected to the lack of

protection. SQL injection cyber-attacks conduct

with segment of malicious code into SQL query

through none or without proper validated

environment and that will be received by the web

servers. Such malicious codes, which are inserted

by the cyber attackers are pretend as the

legitimate SQL query statements. Hence,

sequential execution of such malicious codes by

the web servers affect to the internal system and

database management systems, which leads to

SQL injection cyber-attacks in order to execution

of improper SQL commands. Most of the SQL

injection attacks are effective due to deficiency of

proper validation. Though, a successful SQL

injection

attack vastly interferes with integrity, availability

and confidentiality of the data in the data bases.

In addition, based on the research findings and

prevailing statistics, as well as based on the

available data in the internet, such SQL injection

cyber-attacks have a serious impact with global

organizations. Accordingly, there is a vital global

requirement to overcome SQL injection attacks

with an effective solution. With this view, there

are three key objectives in this research. The first

objective is to detect the SQL injection attacks

affect to the web servers. Afterwards, the second

objective is to explore the preventive solution for

SQL injection attacks affect to the web servers.

Finally, the third objective is to share the

knowledge on SQL injection attacks with other

researchers.

II. LITERATURE REVIEW

At present, majority of people use web

applications, which are accessed through World

Wide Web, precisely for long distance

communications, online marketing, distance

learning, e-banking and social media networks.

Amongst the web applications, the most of them

are available for anyone globally without any

restrictions. Because of such reasons, it is

exposed to confront with many challenges

comprising more security issues cum cyber-

attacks via internet. Consequently, Lijiu (2010)

revealed about the web application

vulnerabilities, such as malicious file execution,

cross site scripting, SQL injection and cross site

request forgery, which have the connection with

secure coding of web applications. Further, Mark

(2006) also studied regarding security

383

vulnerabilities related to web applications

including different types of analysis tools.

Moreover, Mark (2006) identified different types

of analysis tools such as, source code analysers,

Black box scanners, DB scanners, Binary analysis

tools, Runtime analysis tools, Configuration

analysis tools and Proxy analysis tools.

Accordingly, the tool termed “MUSIC” tool is used

to check the mutants in the SQL source code

queries. Further, the tool termed “SUSHI” is used

to resolve existing constrains in the strings.

Moreover, another tool termed “Ardilla” is used

to create SQL injection attacks and to test the web

scenarios. In addition, the tool termed “String

Analyser” is used to analyse the web strings.

In the prevailing literature, the usage of web

applications with validation using cryptographic

modules and increasing cyber threats related to

security of web applications have been explored

(Dima, 1999). In view of that, web applications

are able to use the modules for password

cryptography, password generating and so on

(Dima, 1999). Further, Dima (1999) explored the

usages connected to web application

components as well as how they develop

overcoming increasing cyber threats. Further,

the usages related to firewalls as a way of

network site protection against external

intrusions and attacks also were explored in the

prevailing literature. Moreover, it was identified

about the explorations of components, which are

basically included in a firewall policy including

filtering of packets, proper authentication and

application gateways (Dima, 1999).

Among the web based cyber-attacks, which are

occurred as SQL injection attacks, prevail globally

and cause serious impacts with web applications.

SQL injection attacks conduct with including

segment of malicious code into SQL query via

none or without proper validated environment

and that will receive by web servers. It was found

that, there are faults regarding web applications,

the most hazardous types of vulnerabilities are

Cross site scripting and SQL injection attacks

(Jose, 2008). It was identified the different types

of issues related to web application cyber-attacks

such as injection of commands, traversal of path,

LDAP injection, SQL injection and Spoofing of

content (Sven, 2008). Further, the more critical

vulnerabilities are occurred due to cross site

scripting and SQL injection attacks (Jose, 2008).

Moreover, Lijiu (2010) revealed that, web

application vulnerabilities such as malicious file

execution, cross site scripting, SQL injection and

cross site request forgery, which have the

connection with secure coding of web

applications. It was explained regarding

vulnerabilities of SQL injection attacks & cross

site scripting which caused harm to a number of

web applications (Andrea, 2012).

Based on the prevailing literature, several

researchers have explored and introduced

different SQL detection and preventive solutions.

Accordingly, Rai and Nagpal (2019) studied on

SQL injection attacks and proposed methods and

tools for detection and preventive solutions,

while discussion their effectiveness. Further,

Singh et al. (2014) also proposed a model to block

the SQL injections, while analysing the existing

detection prevention techniques against SQL

injection attacks. Moreover, Jemal et al. (2020)

also proposed the solutions to mitigate SQL

injection, specifically through ontology and

machine learning. A differential process to

safeguard against SQL injection attacks, which is

used in ASP.NET apps has been introduced

(Kausar et al., 2019). In addition, Hu (2017)

introduced a defence resistance and remedy

model of SQL injection attack, which is

established from the perspective of non-intrusive

SQL injection attack and defence.

III. METHODOLOGY AND EXPERIMENT

In achieving the objectives of the study, the
methodology adopted by the researchers was
creating an environmental variable for “php.exe”
file as the first step. As the second step, a “bat” file
for run “sql_injection_block.php” file was created.
As the third step, a “task scheduler” adding “bat”
file to run the “sql_injection_block.php” file
continuously with appropriate time intervals
was created. As the final step, APACHE log files to
the proposed application with the given
command prompt command was linked. The
adopted method of SQL injection attack
identification ip address blocking process is
descriptively displayed (Figure 1).

384

Figure 1. SQL Injection attack identification IP
address blocking process

Source: Developed by the researchers based on
the research study

Accordingly, when the user input malicious code
or any input for SQL injection attack or any
purpose, then it will compare with SQL injection
attack patterns and if the user input compares
with specified patterns, then that the user input
attempt will take as suspicious attempt. If such
number of attempts exceeded more than
specified number of attempts, then that host ip
address will be blocked automatically. All the
suspicious attempts will be stored in the
“suspicious_ips” file. Blocked IPs too added to
another file called “blocked_ips”. If it is required
to remove blocked IP address from blocked IP
addresses list, then

this solution has a facility to do that. User input
time also will be stored in the “suspicious_ips” file
and it will be able to analyze later too.

A. Access Log Analysis Methodology

First have to set the path to APACHE access log
files in the “apache_acess.bat” file. Then it has to
connect to the task scheduler and it is required to
set the interval of time that want to run reiterate.
Source code files have located and it is required
to give path of the “sql_injection_block.php” with
suitable parameters in the bat file. All the
installation process and operatable process will
be mentioned later in detailed manner. After
installation Apache access log files will be
analyzed after specified time period in the task

scheduler and all the suspicious user attempts in
the Apache log files will be stored in the
“suspicious_ips”. If user suspicious attempts
more than specified count of the source code,
then that user will be blocked automatically and
added to “blocked_ips” list. If it is required to
remove some identified blocked ip from blocked
ip list, then it will be able to remove such ip from
blocked ip list. Such operations are mentioned in
detailed manner later. POST or GET user inputs
will be analyzed and therefore any POST or GET
malicious user inputs will be blocked with this
solution.

B. Specified SQL Injection Comparing Patterns

apacheaccesspaterns[] = "/|select[*]from|select

* from|select*from|'or'1'=1|/i"

apacheaccesspaterns[] = "/or1=1|update

set|insert into|delete from|/i"

apacheaccesspaterns[] = "/order by|1'1|select

count([*])|1 and 1=1|/i"
apacheaccesspaterns[]
="/1| |O|R|=| '|1
UNION ALL SELECT 1,2,3,4,5,6,name FROM
sysObjects WHERE xtype = 'U' --|/i"

C. Installation Process for Manual Process

This solution was designed for Windows
Operating System, but later the research will be
continued for Linux Operating System too. This
solution was designed with “XAMPP” installer. At
first, it is required to install “XAMPP” software.
Then it is required to set environmental variable
path to php folder as follows;

▪ First, go to control panel.
▪ Then, go to “system”.
▪ Next, go to “change setting”.
▪ Then, go to “Advanced” tab.
▪ Then, go to environmental variables.
▪

▪ Then, select the “Path” environmental

variable (Figure 2) and go to “Edit” and
click.

▪ Then, click new and type or copy and
paste the path to the “PHP” folder
(Figure 2), select area and click “ok”
button.

385

Figure 2. New Environmental Variable for “PHP”

Folder
Source: Developed by the researchers based on

the research study

Afterwards, it is required to locate the
“sql_injection_block” folder as your preference.
Then, it is required to open command prompt
and change the command prompt location to
“sql_injection_block” directory.

D. Manual Operating Process

At first, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command, “php
sql_injection_block.php”, “php
sql_injection_block.php -h” or “php
sql_injection_block.php --help”.

Figure 3. Obtaining user operating options

Source: Developed by the researchers based on
the research study

Obtaining user operating options and details
option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php

Obtaining user operating options and details
option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -h

Obtaining user operating options and details
option 3

 C:\xampp\htdocs\sql_injection_block>
 php sql_injection_block.php –help

1) Obtaining Statistics: Firstly, it is required to
take the command prompt location to
“sql_injection_block” directory location and enter
the command,
“php sql_injection_block.php --statistics” or
“php sql_injection_block.php -s”.

Obtaining statistics option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -s

Obtaining statistics option 2
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php --statistics

When entering the above-mentioned command
at the first time, it will be appeared as “No data!”
due to the absence of “suspicious_ips” file. Before
obtaining the statistics it is required to parse the
Apache log files as below Figure 4 entering
command “php sql_injection_block.php --parse-
apache-log --
path=C:\xampp\apache\logs\access.log”.

 Figure 4. Parsing APACHE access log files

Source: Developed by the researchers based on
the research study

Initially, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command,
“php sql_injection_block.php --parse-apache-log -
-path=C:\xampp\apache\logs\access.log”.

Parsing APACHE log files option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php --parse-

apache-log –
path=C:\xampp\apache\logs\access.log

Parsing APACHE log files option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -a -

C:\xampp\ apache\ logs\access.log

386

Figure 5. Obtaining statistics
Source: Developed by the researchers based on

the research study

Firstly, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command, “php
sql_injection_block.php --statistics” or“php
sql_injection_block.php -s”.

Obtaining statistics option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -s

Obtaining statistics option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php –statistics

After parsing APACHE access log files, it is
possible to obtain the statistics (Figure 5).

2) Obtaining List of Black Listed IP Addresses:
Initially, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command, “php
sql_injection_block.php --list” or“ php
sql_injection_block.php -l”.

Obtaining black listed IP addresses option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -l

Obtaining black listed IP addresses option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php --list

When entering the above mentioned command in
the first time, it is appeared as “No data!” due to
absence of “suspicious_ips” file. Before obtaining
statistics, it is required to parse the Apache log
files as in below (Figure 6) entering command
“php sql_injection_block.php --parse-apache-log -
-path=C:\xampp\apache\logs\access.log”.

Firstly, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command, “php
sql_injection_block.php --parse-apache-log --
path=C:\xampp\apache\logs\access.log”.

Figure 6. Obtaining black listed IP addresses
Source: Developed by the researchers based on

the research study

Firstly, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command, “php
sql_injection_block.php --list” or “php
sql_injection_block.php -l”.

Obtaining black listed IP addresses option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -l

Obtaining black listed IP addresses option 2
C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php–list

After parsing APACHE access log files, it is
possible to get black listed IP addresses.

3) Obtaining List of Black Listed IP Addresses with
Suspicious Activity Count: Firstly, it is required to
take the command prompt location to
“sql_injection_block” directory location and enter
the command, “php sql_injection_block.php–list -
-count” or“php sql_injection_block.php -l -c”.

Obtaining black listed IP addresses with
suspicious count option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -l -c

Obtaining black listed IP addresses with
suspicious count option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php–list --count

When entering the above mention command for
the first time, it is appeared as “No data!” due to
absence of “suspicious_ips” file. Before obtaining
statistics, it is required to parse the Apache log

387

files as below Figure 7 entering command “php
sql_injection_block.php --parse-apache-log --
path=C:\xampp\apache\logs\access.log”.

4) Obtaining Black Listed IPs with Suspicious
Activity

Time: Initially, it is required to take the command
prompt location to “sql_injection_block”
directory location and enter the command “php
sql_injection_block.php –list --time” or“php
sql_injection_block.php -l -t”.

Obtaining black listed IPs with suspicious activity
time option 1

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php -l -t

Obtaining black listed IPs with suspicious activity
time option 2

C:\xampp\htdocs\sql_injection_block>
php sql_injection_block.php –list --time

When you enter first time above mention
command, then you will get as “No data!” due to
absence of “suspicious_ips” file. Before obtaining
statistics, you have to parse the Apache log files
as below Figure 7 entering command “php
sql_injection_block.php --parse-apache-log --
path=C:\xampp\apache\logs\access.log”.

Figure 7. Black listed IPs with last activity time

Source: Developed by the researchers based on
the research study

5) Obtaining Black Listed IPs with Suspicious
Activity

Count and Time: Initially, it is required to take the
command prompt location to
“sql_injection_block” directory location and enter
the command, “php sql_injection_block.php –list
–count --time” or “php sql_injection_block.php -l
-c -t”.

Obtaining black listed IPs with suspicious activity
count and time option 1

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php -l -c -t

Obtaining black listed IPs with suspicious activity
count and time option 2

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php --list --count
–time

When entering the above mention command for
the first time, it is appeared as “No data!” due to
absence of “suspicious_ips” file. Before obtaining
statistics, you have to parse the Apache log files
as below Figure 8 entering command “php
sql_injection_block.php --parse-apache-log --
path=C:\xampp\apache\logs\access.log”.

Figure 8. Parsing APACHE access log files
obtaining black listed IPs with suspicious

activity count and time

Source: Developed by the researchers based on
the research study

6) Removing Black Listed IP Addresses and
Adding to White List:

Removing black listed IP option 1

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php -
r123.231.48.246

Removing black listed IP option 2

C:\xampp\htdocs\sql_injection_block>

php sql_injection_block.php --
romove=123.231.48.246

Figure 9. Removing black listed IPs

Source: Developed by the researchers based on
the research study

388

E. Installation Process for Automated Process

This solution was designed for Windows
Operating System and later research will be
continued for Linux Operating System too. This
solution was designed with “XAMPP” installer
and. At first, it is required to install “XAMPP”
software.

1) Setting the Environmental Variable Path to PHP
Folder:

Setting the environmental variable path to PHP
folder as follows;

i. First, go to control panel.
ii. Then, go to “system”.
iii. Next, go to “change setting”.
iv. Then, go to “Advanced” tab.
v. Then, go to environmental variables.

Figure 10. Environmental variables

Source: Developed by the researchers based on
the research study

vi. Then, select the “Path” environmental
variable as in the above “Figure 10” and
go to “Edit” and click.

vii. Then, click new and type or copy and
paste the path to the “PHP” folder as in
the below Figure 11, selected area and
click “ok” button.

viii. Create “sql_injection_block.bat” file as in
below (Figure 11).

Figure 11. sql_injection_block.bat file

Source: Developed by the researchers based on
the research study

In here, “cd <sql_injection_block directory path>
“php <path to the Apache access log file>” are
inserted.

ix. Then locate the “sql_injection_block.bat”
file in the sql_injection_block directory.

2) Adding the Bat File to the “Task Scheduler”:

i. Go to start menu and type “control
panel” and click it.

ii. Then, go to “Administrative tools”.
iii. Then, go to “Task schedular”.
iv. Create new task “sql_injection_block”.

It is required to set triggering settings at least
thirty minutes and repeat activity after every
thirty minutes and it is required to make sure not
to set run multiple processes. The, it is required
to set settings as Queue.

v. Then run the task “sql_injection_block”.

Figure 12. Queuing in Task Scheduler

Source: Developed by the researchers based on
the research study

389

F. IP Addresses Blocking Process

After detection of the vulnerable IP addresses,
the identified IP addresses will be added to the
“suspicious_ips” file. Then, that suspicious IP
address will be added to the “.htaccess” file for
access deny. When it is required to remove
blocking IP address, then IP address will be
removed from the “.htaccess” file.

Figure 13. .htaccess file

Source: Developed by the researchers based on
the research study

Figure 14. .htaccess file inside

Source: Developed by the researchers based on
the research study

G. Performance Analysis and Evaluation of the

Current System

When user requests and inputs malicious codes

or any input that caused to SQL injection attack

or any user valid purposes, then it will be

compared with SQL injection primitive attack

patterns and then user requests and inputs will

be compared with specified patterns in the

proposed system. As well as, if such user requests

are matched with specified malicious patterns in

the proposed system, then such user input

attempts will be taken as suspicious attempt and

the IP address such attempts coming will be

taken as the suspicious IP address. If such

number of attempts are exceeded more than

specified number of malicious attempts, then that

host IP address will be blocked automatically. All

the suspicious attempts will be stored in the

“suspicious_ips” file. Blocked IPs too are added to

another file called “blocked_ips”. If it is required

to remove the blocked IP address from blocked IP

addresses list, then this solution has a facility to

do that. It was explained earlier. User input times

also will be stored in the “suspicious_ips” file and

it will be able to analyse later too.

As the first step, it is required to set the path to

APACHE access log files in the “apache_acess.bat”

file. Then it is required to connect to the task

scheduler and it is required to set the interval of

time that want to run iteratively. Source code

files have to be located and it is required to give

path of the “sql_injection_block.php” with

suitable parameters in the bat file. All the

installation process and operatable process will

be mentioned later in detailed manner. After

installation of the Apache access log files, it will

be analysed after specified time period in the task

scheduler and all the suspicious user attempts in

the apache log files will be stored in the

“suspicious_ips”. If user suspicious attempts are

more than specified count of the source code,

then that user will be blocked automatically and

added to “blocked_ips” list. If it is required to

remove some identified blocked IP from blocked

IP list, then it will be able to remove such ip from

blocked IP list. Such operations mentioned in

detailed manner earlier with commands. POST or

GET user inputs will be analysed and therefore

any POST or GET malicious user inputs will be

blocked with this solution. After processing of the

“suspicious_ips” file, if suspicious pattern

matching count is exceeded the specified count in

the proposed system, then such IP addresses will

be added to the “.htaccess” file as “deny access

<IP address>”. Then that IP address will be

blocked for external users for the internet access.

Figure 15. Blacklisted IP addresses

390

Source: Developed by the researchers based on
the research study

The detailed results are descriptively elaborated

under the section of Results.

IV. RESULTS

 Under this section, the statistics of the user

requests are explained. Through the result

issuing command namely, “—statistics” the most

active top five addresses termed, 127.0.0.1,

43.250.240.152, 93.174.93.149, 103.242.0.73

and 103.45.9.123 were obtained. The recorded

occurrence of the IP address of 127.0.0.1 was

254448. The recorded occurrence of the IP

address of 43.250.240.152 was 6042. The

recorded occurrence of the IP address of

93.174.93.149 was

1558. The recorded occurrence of the IP address

of 103.242.0.73 was 1444. The recorded

occurrence of the IP address of 103.45.9.123 was

1444.

Figure 16. Analysed user request statistics

Source: Developed by the researchers based on
the research study

The analysed and processed statistics of user

requests, which were requested by the users, are

descriptively displayed (Figure 16). The counted

malicious attempts and the most top five IP

addresses are descriptively displayed in Figure

16. Further, the last activity time figures also are

displayed. The last activity recorded date and

time for IP address 127.0.0.1 was 2018-08-01 at

14:22:07. The last activity recorded date and

time for IP address 43.250.240 was 2018-10-10

at 13:47:23. The last activity recorded date and

time for IP address 93.174.93.149 was 2018-06-

25 at 13:02:56. The last activity recorded date

and time for IP address 103.242.0.73 was 2018-

06-12 at 09:31:42. The last activity recorded date

and time for IP address 103.45.9.123 was 2018-

05-22 at 07:40:52. According to the second table

of Figure 16, last five IP addresses with the last

activity details are displayed.

A. Listing of Black Listed IP Addresses

The results according to Figure 16 were obtained

by using “--list” command in the console. IP

address blacklist was happening due to the host

trying for vulnerable patterns as http requests in

several times. After exceeding of the predefined

maximum count, IP addresses were blacklisted as

vulnerable IP addresses. The results of listing of

black listed IP addresses is descriptively

displayed (Figure 17).

Figure 17. Listing of blacklisted IP addresses

Source: Developed by the researchers based on
the research study

Above mentioned “Listing of blacklisted IP

addresses” in the “Figure 17” shows the Listing of

blacklisted IP addresses that user requests

coming from. From such IP addresses mentioned

in the “Figure 15” shows requested vulnerable

requests more than specified vulnerable attempt

count in the proposed solution. After entry of the

statement termed, “Deny from <IP address>” to

the “.htaccess” file, accessing the webserver was

blocked for that specific IP address. “403

forbidden” Error was occurred after that host

tried to access again. The blacklisted IP addresses

such as; 123.231.48.246, 139.162.116.133,

43.241.252.89, 43.250.240.152, 43.250.242.203,

43.250.242.161, and 43.250.242.107 were

received after analysing of apache access.log file.

If it is required to remove some IP addresses

from the blacklisted list, then it will be not

391

appeared in the blacklisted IP address list and

that IP address will be able to access the web

server continuously without any hindrance.

Then, IP details of “suspicious_IPs” file will be

updated stored in the “suspicious_IPs” file. “--

remove = < IP address >” command used to

remove IP address from the blacklisted IP

address list. After analysing Apache access.log

files these blacklisted IP address details will be

stored in the “suspicious_IPs” file and then later

also could be able to analyse and will be able to

get the backup copies. When using “--list”

command other details such as; blacklisted time,

suspicious occurrences count, last activity time

like such details regarding that IP address will

not be displayed and only the IP address will be

displayed. If it is required such details then it is

required to enter other commands and that

commands will be explained in detailed manner

later.

B. Listing of Black Listed IP Addresses with

Suspicious Attempt Count

According to Figure 18, the results of listing

blacklisted IP addresses with count of vulnerable

activities tried as http requests are descriptively

shown. When using “--list --count” command

other details such as; blacklisted time, last

activity time like such details regarding that IP

address will not be displayed and only IP address

with count of occurrences of vulnerable activities

as http requests will be displayed. If it is required

such details then it is required to enter other

commands and that commands will be explained

in detail later. After issuing “--list --count”

command, blacklisted IP addresses with

vulnerable activity count is shown in Figure 17,

“5.3 listing of black listed IP addresses with

suspicious attempt count”.

Figure 18. Listing of black listed IP addresses

with suspicious attempt count

Source: Developed by the researchers based on
the research study

Above mentioned “Listing of black listed IP

addresses with suspicious attempt count” in

“Figure 17” shows the listing of blacklisted IP

addresses that user requests coming from with

their suspicious attempts count in front of them.

In here 123.231.48.246, 139.162.116.133,

43.241.252.89, 43.250.240.152, 43.250.242.203,

43.250.242.161, 43.250.242.107 were the

blacklisted IP addresses. The blacklisted IP

address 123.231.48.246 was recorded with

count of 225 vulnerable activity counts. The

blacklisted IP address 139.162.116.133 was

recorded with count of 11 vulnerable activity

counts. The blacklisted IP address 43.241.252.89

was recorded with count of 254 vulnerable

activity counts. The blacklisted IP address

43.250.240.152 was recorded with count of 260

vulnerable activity counts. The blacklisted IP

address 43.250.242.203 was recorded with

count of 140 vulnerable activity counts. The

blacklisted IP address 43.250.242.161 was

recorded with count of 76 vulnerable activity

counts. The blacklisted IP address

43.250.242.107 was recorded with count of 1136

vulnerable activity counts. After analysing

Apache access.log files, these blacklisted IP

address details were stored in the

“suspicious_IPs” file. There is a PHP function

called “parseFile” in the

Apacheaccesslogparser.php file and within that

function new IP details were added to the

“suspicious_IPs” file. When issuing command “--

list --count” then these details were taken from

“suspicious_IPs” file. When using “--list --count”

command other details such as; blacklisted time,

last activity time like such details regarding that

IP address were not displayed and only

blacklisted IP addresses with vulnerable activity

count were displayed. If such details are

required, then it is necessary to enter other

commands and that commands will be explain in

detailed manner well ahead.

C. Listing of Black Listed IP Addresses with Last

Suspicious Attempt Time

392

The results of listing of black listed IP addresses

with last activity time is displayed in the Figure

19. The results were obtained using “--list --time”

command in the console. After analysing Apache

access.log files these blacklisted IP address and

other details will be stored in the

“suspicious_IPs” file and when issuing command

“--list --time”, then these details will be taken

from “suspicious_IPs” file.

Figure 19. Listing of black listed IP addresses

with last suspicious attempt time

Source: Developed by the researchers based on
the research study

Above mentioned “Listing of black listed IP

addresses with last suspicious attempt time”

(Figure 19) shows the Listing of black listed IP

addresses that user requests coming from with

their suspicious last attempted time in front of

them.

In here, 123.231.48.246, 139.162.116.133,

43.241.252.89, 43.250.240.152, 43.250.242.203,

43.250.242.161, 43.250.242.107 were the

blacklisted IP addresses. The blacklisted IP

address 123.231.48.246 was recorded with last

vulnerable activity date and time as 2018-10-11

at 06:51:40. The

blacklisted IP address 139.162.116.133 was

recorded with last vulnerable activity date and

time as 2018-10-16 at 11:25:01.The blacklisted

IP address 43.241.252.89 was recorded with last

vulnerable activity date and time as 2018-10-09

at 10:04:59.The blacklisted IP address

43.250.240.152 was recorded with last

vulnerable activity date and time as 2018-10-10

at 14:31:09.The blacklisted IP address

43.250.242.203 was recorded with last

vulnerable activity date and time as 2018-10-23

at 10:06:38.The blacklisted IP address

43.250.242.161 was recorded with last

vulnerable activity date and time as 2018-12-04

at 05:00:26.The blacklisted IP address

43.250.242.107 was recorded with last

vulnerable activity date and time as 2018-12-04

at 06:13:16. These details were added to the

“suspicious_IPs” file from “$ipInfo” array. The

new IP details were added to the “$ipInfo” array

with in “Apacheaccesslogparser.php” file. A PHP

function called “parseFile” was included there

and within that function new IP details were

added to the “suspicious_IPs” file.

D. Listing of Black Listed IP Addresses with

Suspicious Attempt Count and Last Suspicious

Attempt Time

The result of listing black listed IP addresses with
last activity time and count of suspicious
activities are shown in below (Figure 20). That
results were obtained using “--list--count --time”
command in the console.

Figure 20. Listing of black listed IP addresses

with suspicious attempt count and last

suspicious attempt time

Source: Developed by the researchers based on
the research study

Above mentioned “Listing of black listed IP

addresses with suspicious attempt count and last

suspicious attempt time” in the “Figure 19”

shows the Listing of blacklisted IP addresses that

user requests coming from with their suspicious

last attempted time and suspicious attempt count

in front of them. In here 123.231.48.246,

139.162.116.133, 43.241.252.89,

43.250.240.152, 43.250.242.203,

43.250.242.161, 43.250.242.107 were the

blacklisted IP addresses. The blacklisted IP

address 123.231.48.246 was recorded with last

vulnerable activity date and time as 2018-10-11

at 06:51:40 and count of vulnerable activities as

225. The blacklisted IP address 139.162.116.133

was recorded with last vulnerable activity date

and time as 2018-10-16 at 11:25:01 and count of

393

vulnerable activities as 11. The blacklisted IP

address 43.241.252.89 was recorded with last

vulnerable activity date and time as 2018-10-09

at 10:04:59 and count of vulnerable activities as

254. The blacklisted IP address 43.250.240.152

was recorded with last vulnerable activity date

and time as 2018-10-10 at 14:31:09 and count of

vulnerable activities as 260. The blacklisted IP

address 43.250.242.203 was recorded with last

vulnerable activity date and time as 2018-10-23

at 10:06:38 and count of vulnerable activities as

140. The blacklisted IP address 43.250.242.161

was recorded with last vulnerable activity date

and time as 2018-12-04 at 05:00:26 and count of

vulnerable activities as 76. The blacklisted IP

address 43.250.242.107 was recorded with last

vulnerable activity date and time as 2018-12-04

at 06:13:16 and count of vulnerable activities as

1136. After analysing Apache access.log files

these blacklisted IP address and other details

were stored in the “suspicious_IPs” file and when

issuing command “--list --count --time”, then

these details were taken from “suspicious_IPs”

file.

E. Apache Access Log File Analysis

The results of parsing Apache access.log file

analysis is displayed below (Figure 21). That

results were obtained using “--parse-apache-log -

-path = <path to the Apache access.log file>”

command in the console. In here “suspicious IP

addresses before processing: 76” means, before

parsing Apache access.log file for processing

which was previously stored suspicious IP

addresses count in the “suspicious_IPs” file is 76.

When single suspicious activity encountered

from an IP address, then that IP address was

taken as suspicious IP address. Further, it was

become as blacklisted IP address when exceeding

the predefined suspicious activity count.

Figure 21. Apache access log file analysis

Source: Developed by the researchers based on
the research study

Above mentioned “Apache access log file

analysis” in the “Figure 21” shows the Listing of

blacklisted IP addresses that user requests

coming from with suspicious IP addresses count

before processing, Blacklisted IP addresses count

before processing, Total vulnerable pattern

match count, suspicious IP addresses count after

processing, Blacklisted IP addresses count after

processing.

In here “Blacklisted IP addresses before

processing was 11” means, before parsing

Apache access.log file for processing previously

stored blacklisted IP addresses count in the

“suspicious_IPs” file is 11. In here total vulnerable

pattern match count was 7785. Here “suspicious

IP addresses after processing: 77” means, after

parsing Apache access.log file for processing total

stored suspicious IP addresses count in the

“suspicious_IPs” file is 77 and new one suspicious

IP address added to the “suspicious_IPs” file after

parsing the Apache access.log file for processing.

Here “Blacklisted IP addresses after processing

was 11” means, after parsing Apache access.log

file for processing total stored blacklisted IP

addresses count in the “suspicious_IPs” file was

11. It means no new blacklisted IP address added

to the “suspicious_IPs” file.

F. Removing Blacklisted IP Address

The results of removing blacklisted IP addresses

is shown below (Figure 22). That results were

obtained using “--remove = <IP address>”

command in the console. After removing

blacklisted IP address, then it was stored in the

“suspicious_IPs” file.

Figure 22. Removing blacklisted IP address

Source: Developed by the researchers based on
the research study

394

Figure 22 shows removing blacklisted IP

addresses and after removing that IP address all

suspicious activity count of that IP address, last

activity time of that IP address. All blacklisted IP

addresses listed here after removing the

specified IP address. When removing of some IP

address from the blacklisted IP address list, then

it was not appeared in the blacklisted IP address

list and that IP address was able to access the web

server continuously without any hindrance. Then

IP details of “suspicious_IPs” file was updated

and stored in the “suspicious_IPs” file, then later

too can be analysed and will be able to get backup

copies. The command “--remove = < IP

address > ” was used to remove IP address from

the blacklisted IP address list. Removing

blacklisted IP address will do from handling

“.htaccess” file. In here “.htacess” was used to

block vulnerable hosts adding “Deny from

<ipaddress>” code inside it and this code will be

added to each and every vulnerable blacklisted IP

address to block the server access. Then it will be

given “403 Forbidden” error to vulnerable host

preventing access to the server. After removing

the black listed IP address from the black listed

list then “Deny from <ipaddress>” entry will be

removed from the “.htaccess” file for the relevant

removed IP address.

G. Test an Evaluation of Final Host IP Address

Blocking

Figure 23. Host public IP address

Source: Developed by the researchers based on
the research study

Above Figure 23 shows the tested vulnerable

host public IP address (43.250.242.107).

Figure 24. Blacklisted IP addresses

Source: Developed by the researchers based on
the research study

Above Figure 20 shows the black listed

vulnerable host public IP addresses. Above

Figure 24 shows public IP address

(43.250.242.107) wasn’t belong to the black

listed IP addresses after removing public IP

address (43.250.242.107) from black listed IP

addresses list of Figure 20

Figure 25. Trying to access web Server with

vulnerable codes

Source: Developed by the researchers based on
the research study

Above Figure 25 shows vulnerable host (public IP

address (43.250.242.107)) was trying to access

web server (public IP address (43.250.242.107))

with vulnerable user inputs “'or'1'=1”

continuously and after the exceeding of

maximum count of vulnerable accesses IP

address, 43.250.242.107 added to black listed IP

address list.

395

Figure 26. Trying to access web Server with

vulnerable codes

Source: Developed by the researchers based on
the research study

Above Figure 26 shows the IP address,

43.250.242.107 added to the black listed IP

address list.

Figure 27. Trying to access web Server after

vulnerable host black listed

Source: Developed by the researchers based on
the research study

Above Figure 27 shows web results when trying

to access web server after vulnerable host (IP

address 43.250.242.107) got blacklisted with

legitimate URL.

 V. DISCUSIION AND CONCLUSION

The proposed solution for SQL injection

prevention facilitates for the continuous

monitoring of suspicious activities. Conferring to

this proposed solution, there is no requirement

for the user to concern about monitoring or else

IP address blocking activities in web

applications. Further, the proposed solution

automatically blocks the vulnerable hosts using

its IP address. Moreover, the proposed solution

facilitates for listing of blocked IP addresses if the

user needs to remove some IP address from the

black listed IP address list. As well as, the user

could be able to customize the blocked IP address

list according to his will. Further, this proposed

solution facilitates the user to view the last

activity time of the suspicious IP addresses with

the suspicious activity count, then the user will be

able to compare each of suspicious IP addresses.

In view of that, all the suspicious activities will be

stored in a file including suspicious activity time,

suspicious activity count, then the user will be

able to later process or analyze such details

further and such data backups also able to take.

However, the proposed solution is designed

mainly for “Windows” operating systems and

have to install “XAMPP” or “WAMP” software,

which is freely available in the Internet. Proposed

solution is composed of a set of vulnerable user

http request patterns & it is recommended to add

more vulnerable user http request patterns. Then

the user faithfulness to the proposed system will

be increased. Further, it is recommended to use

XAMPP version 7 or above. Finally, the proposed

solution is recommended for “Windows 7” or

above.

REFERENCES

Boyd, S., Keromytis, A. and Rand, S.O.L. (2018)

Preventing SQL Injection Attacks, Columbia University,

Available at: https://www1.cs. columbia. edu/

~angelos/ Papers/ sqlrand.pdf [Accessed 05 May.

2018].

Buehrer, G., Weide, B. and Sivilotti, P. (2005) Using

parse tree validation to prevent SQL injection attacks,

Research Gate, Available at: https:// www .

researchgate . net / publication /

221215947_Using_parse_tree_validation_to_prevent_S

QL_injection_attacks [Accessed 05 Jun. 2018].

Christensen, S., Moller, A. And Schwartzbach, M. (2003)

Precise Analysis of String Expressions. Berlin, Germany:

Springer, PP.1-50.

Cisco. (2014) A Review: Prevent SQL Injection Attacks

Using IPS. International Journal of Advanced Research

in Computer and Communication Engineering, [online]

Volume 3, Available at: https://ijarcce.com/wp-

content/uploads/ 2014/10/IJARCCE1I-a-amit-

harpreet1-A-Review-Prevent-SQL-Injection-Attacks-

Using-IPS.pdf [Accessed 07 Aug. 2018].

Faker, S., Muslim, M. and Dachlan, H. (2017) A

Systematic Literature Review on SQL Injection Attacks

Techniques and Common Exploited Vulnerabilities.

https://ijarcce.com/wp-content/uploads/
https://ijarcce.com/wp-content/uploads/

396

International Journal of Computer Engineering and

Information Technology, [online] Volume 9, Available

at: http://www.ijceit.org/ published/ volume9/

issue12/ 2Vol9No12.pdf [Accessed 26 Jan. 2018].

Halfond, W. and Orso, A. (2007). Malware Detection.

Boston, USA: Springer, P. 86.

Janot, E. and Zavarsky, P. (2008). Preventing SQL

Injections in Online Applications: Study,

Recommendations and Java Solution Prototype Based

on the SQL DOM. ResearchGate, Available at:

file:///C:/Users/CRD/Downloads/2008_OWASP_App

Sec_Preventing_SQL_injections_in_online_applications

.pdf [Accessed 15 Mar. 2018].

Jemal, I., Cheikhrouhou, O, Hamam, H. and Mahfoudhi

(2020). SQL Injection Attack Detection and Prevention

Techniques Using Machine Learning. International

Journal of Applied Engineering Research, 15 (6), pp.

569-580.

Kaur, H. and Dhingra, S. (2014). A Review: Prevent SQL

Injection Attacks Using IPS. International Journal of

Advanced Research in Computer and Communication

Engineering, [online] Volume 3, Available at:

https://ijarcce.com/wp-content/uploads/

2014/10/IJARCCE1I-a-amit-harpreet1-A-Review-

Prevent-SQL-Injection-Attacks-Using-IPS.pdf

[Accessed 07 Aug. 2018].

Kausar, M.A., Nasar, M. and Moyaid, A. (2019). SQL

Injection Detection and Prevention Techniques in

ASP.NET Web Application. International Journal of

Recent Technology and Engineering (IJRTE), 8 (3), pp.

7759-7766.

Mehta, H. (2018). Threat Intelligence. [online]

Symantec enterprise blogs security. Available at:

https://symantec-enterprise-

blogs.security.com/blogs/threat-

intelligence/microsoft-patch-tuesday-november-

2018 [Accessed 15 Nov. 2018].

Mavituna, F. (2008). Deep Blind SQL Injection.

Portcullis Security, [online] p.A11. Available at:

https:// labs.portcullis.co.uk / whitepapers /

[Accessed 20 Aug. 2018].

Makiou, A., Begriche, Y. and Serhrouchni, A. (2015).

Hybrid Approach to Detect SQLi Attacks and Evasion

Techniques. HAL archives, Available at:

https://hal.archives-ouvertes.fr/hal-

01138604/document [Accessed 10 Oct. 2018].

Muhammad, R., Habib, S. and Bashir, R. (2017).

Detection and Prevention of SQL Injection Attack by

Dynamic Analyzer and Testing Model. ResearchGate,

Available at: https://

www.researchgate.net/publication/319453593_Dete

ction_and_Prevention_of_SQL_Injection_Attack_by_Dy

namic_Analyzer_and_Testing_Model [Accessed 02 Nov.

2018].

Pooja. and Monika. (2016). SQL Injection: Detection

and Prevention Techniques. International Journal of

Scientific & Engineering Research, [online] Volume 7,

Available at:

https://www.ijser.org/researchpaper/SQL-Injection-

-Detection-and-Prevention-Techniques.pdf [Accessed

02 Sep. 2018].

Rai, S. and Nagpal, B. (2014) Detection & Prevention of

SQL Injection Attacks: Developments of the Decade, 3rd

International Conference on Reliability, Infocom

Technologies and Optimization (ICRITO) (Trends and

Future Directions), AIIT, Amity University Uttar

Pradesh, Noida, India.

Singh, J. (2016). Analysis of SQL Injection Detection

Techniques. arXiv, Available at: https:// arxiv . org /

ftp/ arxiv/ papers / 1605 / 1605.02796.pdf [Accessed

08 Jun. 2018].

Singh, S., Tripathi, U. and Mishra, M. (2014). Detection

and Prevention of SQL Injection AttackUsing Hashing

Technique. International Journal of Modern

Communication Technologies & Research (IJMCTR),

[online] Volume 2, Available at:

https://www.academia.edu/9378445/Detection_and

_Prevention_of_SQL_Injection_Attack_Using_Hashing_

Technique [Accessed 22 Aug. 2018].

Valeur, F., Mutz, D. and Vigna, G. (2005). A Learning-

Based Approach to the Detection of SQL Attacks.

ResearchGate, Available at: https:// www .

researchgate . net / publication /

225239186_A_Learning-

Based_Approach_to_the_Detection_of _SQL_Attacks

[Accessed 15 Jul. 2018].

Voitovych, O. and Kupershtein, L. (2016). SQL injection

prevention system. ResearchGate, Available at:

https://www.researchgate.net/publication/3104546

03_SQL_injection_prevention_system [Accessed 03

Aug. 2018].

http://www.ijceit.org/%20published/%20%20volume9/%20issue12/
http://www.ijceit.org/%20published/%20%20volume9/%20issue12/
https://ijarcce.com/wp-content/uploads/

397

ACKNOWLEDGMENT

We immensely thank to all the professionals who

supported in developing this noteworthy

proposed system for SQL injection detection and

prevention in various web applications. Further,

we greatly thank to all the researchers in the

fields of Cyber Security and Software Engineering

who contributed greatly to enhance the pool of

literature, which helped us in order to succeed

our creation.

AUTHOR BIOGRAPHIES

Major GJM Ariyathilake is

presently working as the

Commissioned Officer of Sri

Lanka Army (Software

Engineer) at Centre for

Defence Research and Development. Major

Ariyathilake has completed MSc in IT

(Specialization in Cyber Security) and BSc

(Hons) from Sri Lanka Institute of Information

Technology (SLIIT).

Mrs MHR Sandeepanie is

presently working as the

Senior Assistant Registrar at

General Sir John Kotelawala

Defence University. Mrs

Sandeepanie is presently

reading for PhD in Management at University

of Sri Jayewardenepura. She has completed

MBA (Kelaniya), BSc (Special) (Hons),

National Dip. Training & HRD (IPM), National

Dip. HRM (NIBM), IPICT (UNIC, Denmark).

Mrs Sandeepanie is a Member of IMSL and an

Associate Member of SLITAD.

Dr PL Rupasinghe is presently

working as the Senior Lecturer

at Sri Lanka Institute of

Information Technology

(SLIIT). Dr Rupasinghe has

completed PhD (Curtin University of

Technology, Australia), MBA (PIM, USJ), BSc

(Hons) (SLIIT).

