

292

 ID 496

Automated Software Bug Management System for

Small-Scale Organization

SMKH Hemali# and TGI Udayangi

General Sir John Kotelawala Defence University, Sri Lanka

#35-it-0046@kdu.ac.lk

Abstract -During software running, even errors

due to system complexity and inadequate testing

may occur. Troubleshooting plays an important

role in software development and evaluation

steps. Due to rapid changing technology, the

whole system should adapt according to the

situation, including matters such as well-skilful

persons, technology and data. The bug

management process has several steps, and

controlling those steps is a huge challenge.

Behind the situation, the small-scale Software

companies need resources other than local

organizations. This research focuses on

identifying local small-scale organization

behaviours, since they have fewer financial

problems and less technological literacy of

operating some licensed automation tools used

in the software bug management industry. The

research raises how automation techniques solve

financial challenges faced by small-scale

organizations. A research methodology approach

which analyses previous studies and collected

data is observed, and that information is

validated according to the small-scale

organization requirement. Finally, a proposed a

system to overcome the situation is introduced,

which is a web-based application that hosts the

cloud. The proposed system implementation

provides a facility for real-time communication

between SQA, developers, and other team

members via comments on each reported bug,

while it assigns bugs to all the job roles

represented by the agile software development

life cycle, to reach historical bug records. Facility

to embed the technical evidence as a report to the

bug for a better understanding of the developer

is also introduced. This facility generates reports

for tracking each developer and tester's

performance of that particular local organization.

The proposed system uses an open-source

development framework.

Keywords: bugs, automation, management,

financial, developer, literacy, small-scale

I. INTRODUCTION

During every stage of a given software

development process; the corresponding

software system generates miscellaneous types

of defects. Then before developing a bug

management application requires a deep

understanding of software bug characteristics.

But this process's initial step is estimating the

bug. An efficient bug management process is

critical for the success of software projects. Bug

case to decrease the software reliability, quality,

security, and vital area. Identifying and tracking

these defects efficiently has a measurable impact

on software reliability. (Strate and Laplante,

2013),(Jalbert and Weimer, 2008). The bug

management process is a very difficult task, and

it has prior work to do. For example, by

automating bug triaging, detecting duplicate

bugs, and understanding the rationale for re-

opening bugs. The process of managing bugs

involved several human resources such as

developers, testers, reporters, project managers,

product owners. (Ohira et al., 2012)., Some of the

bugs that developers encounter while working

are having to keep separate records and update

them These often have to be done manually. It

takes extra time because there is a separate

process to manage a bug and it consists of several

steps.(Mujtaba, Mahmood and Nasir, 2011).Bug

management can become even more challenging

when the development projects are large.

Moreover, bad fixes may cause the injection of

new defects in the software. Even small-scale

organizations faced related same situations

within the industry. (Mujtaba, Mahmood and

Nasir, 2011)

The research objective is to identify if a small-

scale organization have sufficient budget to

handle previous process and problems while

encountering the defect managing. Because

most of the time small-scale organizations used

open-source tools to manage bugs. Bugzilla and

293

the ITracker are leading open-source tools in

the industry. But JIRA has licensed software

used to manage bugs. Bugzilla is depending on

platforms, and it has a lower ability to

customize. It is dependent on the SQL database.

Then highly required opensource tool without

those limitations. Another objective is to

identify if they face any problems without

having a customizable application. (Serrano

and Ciordia, 2005),(Grottke and Trivedi, 2007).

The goal of this research is to introduce a new

system to overcome such a situation. The

proposed system should be purchased for a

low price. It is platform-independent and

highly customizable.

II. RELATED WORK

A. Automated duplicate detection for bug

tracking

Bug tracking is one of the stages in the software

bug management process, that process can

identify duplicate bugs. And manual bug

identification was a time-consuming process of

the current software development industries, it

adds a higher extra cost for the development

process. That system used surface features,

textual semantics, and graph clustering to the

prediction for the duplicate bug report. The

author used 29,000 datasets from using the

Mozilla project. This system should be able to

develop costs by filtering 8% of duplicate bug

reports. the textual analysis they used an

algorithm to calculate the similarity of the

document. (Jalbert and Weimer, 2008) Software

bug management systems store valuable data for

testing hypotheses concerning maintenance,

building statistical prediction models, and

investigating developer effectiveness. For the

latter, issue tracking systems can be mined to

explore developers’ emotions, sentiments, and

politeness. But detection in software artifacts is

still in its early stage due to the lack of manually

validated data and tools.

B. Emotional Side of Software Developers in

Jira

The working environment is always not

satisfactory. Software developers also face this

situation. (Ortu et al., 2016) provided a label of

emotions present on issue comments. This paper

authors manually labelled 2,000 issue comments

and 4,000 sentences written by developers with

emotions such as love, joy, surprise, anger,

sadness, and fear. An efficient bug management

process is critical for the success of software

projects.

C. Impact of bug management patterns on bug

fixing The author of this paper has been

mentioned it has prior work focus on improving

automating bug triaging, detecting duplicate

bugs, and understanding the rationale for re-

opening bugs. This paper introduced four

patterns and the different relations between the

people involved in the process: reporter,

developer, tester of a bug. Their case study is

based on Eclipse Platform and Java Development

Tool (JDT) projects. Presenters of this paper

were demonstrated that these patterns have an

impact on the efficiency of the bug management

process. Their conclusion was to improve their

efficiency through better communication about

bugs before assigning them. (Ohira et al., 2012)

D. Bugzilla, ITracker, and other bug trackers

Bugzilla and ITracker are the existing open-

source software of the bug management industry

used. Bugzilla was facilitating to input new bugs

or search for, track, or edit existing ones. It had

two methods to track bugs when you submit the

bug to that system your mandatory input

product, component, version keywords, severity,

attachments, and dependencies fields are related

to fixing the bug. Another way is system-

generated reports. Bugzilla is a web-based

application. ITracker is an issue-tracking system

designed by Jason Carroll in 2002. It was

supported multiple projects with independent

users. Its features resemble Bugzilla’s. When

comparing those two systems main difference is

ITracker is platform-independent and database-

independent. (Serrano and Ciordia, 2005).

E. Bug Characteristic of Open-Source Software

Manually priorities to bugs were resource-

consuming. Researchers were mentioned single

feature is used which leads to information loss

because bugs have a lot of features including

“severity”, “component'', “status”, “assigned to”,

“summary” etc. But this paper introduced the

solution as an improved model based on problem

title, severity, and component for bug

prioritization. They used term frequency and

inverse document frequency to convert textual

features to numeric features. They used a special

algorithm to overcome the complexity of such

feature-generated data. The algorithms are non-

negative matrix factorization, principal

component analysis. In this research on average

294

maximum accuracy is achieved by SVM with Non-

negative Matrix Factorization (NMF) and X-mean

clustering. (Iqbal et al., 2020). When developing

effective tools for bug management want a deep

understanding of the software bug

characteristics. This research paper was based

on open-source projects running by the Linux

kernel, Mozilla, and Apache. They collected a

sampling of 2,060 real-world bugs. The manual

study is separated into three dimensions like root

causes, impacts, and components. suggesting

more support to help developers diagnose and fix

security bugs, especially semantic security bugs.

(Tan et al., 2014).

F. How to Chat Technology Enables Social

Translucence in Bug Report Activities

Software bug management is a daily work

routine in software engineering. The paper may

focus on the use of chat technology in software

engineering by analysing the coordination

between client and vendor in a large government

software project in Brazil (Gov-IT). author of this

paper was used two methods collected data for

their work live and online interviews. They used

chat technology to coordinate their cooperative

work by enabling the participants to monitor the

availability of developers and the urgency of

detecting bugs synchronously. According to their

conclusion, understand the contextual nature

surrounding bugs faster than using the bug

tracking system. (Tenório, Pinto and Bjørn,

2018).

G. Machine Learning Techniques for Software

Defect Detection

Machine Learning approaches are a trend of

problem-solving. Machine learning is a vast area

used in the software development industry.

Machine learning techniques are proven to be

useful in terms of software bug prediction. The

paper is used to analysed to public data set of

software modules and provides comparative

performance analysis of different machine

learning techniques. Software companies are

spread the world widely. Then when developing

the software, the quality problem is a leading

issue for the software industry. The industry is

suffering and closing for this issue. In this

circumstance, it is important to call and remove

its root cause. Recently industry economic loss

will increase. (Aleem, Capretz, and Ahmed, 2015)

H. Challenges of Software Quality Assurance and

Testing

Hossain trying to show some vital challenges of

software quality assurance and testing which

have been facing by software industries. This

research covered both local and international

organizations. that paper introduces the different

categories of challenges along with responsible

stakeholders. And they search and experiment

the testing tools are available testing elements

are available testing process has improved but

still software has some testing challenges. The

conclusion of the author is switching the

systematic approach to solve the problem.

(Hossain, 2018)

III. METHODOLOGY

In this research, a most typical strategy is to

collect data from various sources for study and

refer to past analysis and analyses of previous

research publications and sort some key

information. According to this research used

questionaries for gathered information. This

research gathered information from existing

problems within small-scale IT organizations.

This research identified information by giving

questionaries to all designation such as Quality

Assurance (QA), Developer, BA, etc. Use of

small IT base existing companies. The

statistical sample was included “Enuri

information system (Pvt)”,” Alpha information

system (Pvt)” etc. After gathering 300 sample

data, analysis of them to identify research

problems. It identified the main key problems

that breach from each role. Identifiers were

mapped with the related work. This research

recognizes mapping issues raised by earlier

researchers; company issues will be tailored to

the needs of the organization to continue the

process.

IV. ANALYSIS

After analysis of previous problems, it was a

clear need for the new system to overcome

such problems. The small-scale organization

had to struggle to reduce the budget and

compatible the complex functions. The

proposed system is specially developed by a

selected small-scale organization. The

proposed system maintains easy icons and

user-friendly interfaces to identify the

functions. It was designed to facilitate

295

Prioritization of the Bug, reviewed the

progression of the developers, analyze the

developer’s quality by tracking the number of

bugs, generate a monthly bug managing report,

provide a facility to communicate between

testers, developers, and other team members

via comments on each reported bug, provide

facility to reviewed bug history records. predict

each developer's performance, provide the

facility to embed the technical evidence

(automation test technology-based report

(testNG) report) as a report to the bug for a

better understanding of the developer.

Figure 1.Communication process between front end

and back-end

Source: Author(s)2021

The previous diagram explains how to

communicate the system between the front-end

and back-end using JSON. JSON is a lightweight

format for storing and transporting data. JSON

has an attribute “self-describing data” and “easy

to understand data”. JSON is the most suitable

technology for transport data that generate

Vue.js and Vuetify.js

V. DESIGN

Figure 2.Conceptual design of the system

Source: Author(s)2021

According to the overall system architecture, four

types of user roles could create by system

administrator. And the system inputs are testNG

reports, test code documents, test code images.

Initially, the admin login to the system, and after

he/she will create the user role as a software

tester, developer, project manager, product

owner. Then each user role will enter their

credential and log in to the system. It will provide

the ability to functioning the system. The system

output is system-generated reports. The system-

generated reports are developer progress, bug

progress, monthly progress report.

This system is a web-based system, and it was

hosted by the cloud. This proposed system has 5

modules as Bug, Report, User, label, project. Each

module has divided into sub-modules. Every

Module manages a unique task. In the Bug

module, the User can create bugs, view bug

history, edit bugs. But only the Software Quality

assurance engineer has permission to end bugs.

Only permitted Project module for the project

manager, chief operating officer, Product owner.

This module provides the facility to create a new

project and see current project details, edit the

previously assigned project details. And Label

module provides the facility to create a new label

for newly created bugs or it can be edit

previously once. User modules provide all the

administration processes. This module provides

a facility to create user roles and assign user

permission. Only system admin can create user

roles. The report module provides system

generate reports.

296

VI. IMPLEMENTATION

Figure 3. Web admin interface of the system

Source: Author(s)2021

This project is an online web-based system. And

this system will be doing to overcome previous

research problems. The system may have only

one login page. Because only the system admin

creates the user roles and after created the user

role, that user can be logged into the system using

the credential. But the proposed system restricts

some user permission from those who are not

relevant to each job role. For example, only

Software Quality Assurance (SQA) has

permission to delete the bugs inside the system.

SQA assigns the bug to the system, it will generate

a separate bug id for each unique bug. And had

permission to edit the previously assigned bugs

for every job role that is traded. Only project

managers can assign the project to the proposed

system. The system implements using node.js,

vue.js, and express.js technologies. JSON is the

transmitted media of data from front end to back-

end JavaScript, in the back-end development

technology.

The system will display the status of the bug such

as in queue, in due, hold, completed, QA pass. The

proposed system generates a monthly bug

progress report. This report will include a count

of the fixing bugs in each project, the number of

bugs that fail to fix, total bugs assign to the

system. The system data will be host in the cloud

database. That takes as a data backup. When

considering the system's non-functional

requirement, security act a major role. To

increase the security of the system, only admin

and SQA have been permitted to remove

assigning bugs to each developer. The proposed

system data was stored by the “MySQL” database.

The system was implemented to submit the bug

as image, screenshot, and embedded technical

report such as (testNG report) using the Eclipse

framework.

The proposed system can manage several types

of bugs such as system performance bugs,

functional bugs, non-functional bugs, Security,

Compatibility, Usability bugs. When SQA assigns

bugs mentioning the severity of the bug, then the

proposed system filters bugs according to their

severity. Based on the severity of bugs can be

divided into critical, high-severity, medium-

severity, and low severity. While assigning bugs,

SQA uses a process of prioritization to separate

each bug. Based on priority, it can be divided into

urgent, high-priority, medium-priority, low-

priority. The proposed system provides a facility

to manage bugs of this type. This proposed bug

managing system can be used by any local small-

scale software development organization.

Because most of all the software development

companies follow the same life cycle. They are

the main stakeholders of this product. The

proposed system is most appropriate for project

teams who have fully automated test suites for

their testing process because proposed system

provide embedded facility to attach automated

test report as technical evidence. Each

stakeholder can connect without any conflict

after hosting it in the cloud, the organization can

manage system-generated reports via cloud

providers.

After implementation of the proposed system, it

can be generated different types of system

generated reports, that report evaluates the

whole system. The report includes total bug

count input to the system, solved bug count, exist,

bug count, an average of solved bug count, and

measure Developer’s performance count of bugs

they solve within a period. And measure the

Software quality engineer’s performance also.

The report shows the final summary of the month

and Year. Then it is used to calculate the

efficiency and effectiveness of the employees and

the organization. System-generated reports

generate Quarterly, monthly, or weekly. If

anyone needs to customize the report then the

system provides that facility also. Finally in the

evaluation part system run a fully functional

testing round to ensure the system functions run

without any blockers.

VII. LIMITATION

The function of the system is always efficient

when it has an automated test code of its

application. There is no module for tracking real-

time bugs.

297

While configuring some software it may generate

compatibility issues, and always struggling those

issues.

When used the SQL database, it is spending extra

time to configure and write some quarry.

VIII. FUTURE WORKS

Bug reporting steps are an uncoordinated

distributed process. Therefore, many duplicate

reports are being generated. to address this

issue, there is a need for an automated duplicate

report detection approach. In the fracture,

researchers will plan to create software to track

this problem and to extend this study by

investigating more bug reports from different

software systems. Researchers also would like to

search to improve the accuracy of duplicates.

In facture enhancement, this approach could

explore make fully automated, that means when

bug tracking section module is added. The other

enhancement is the wish to connect the eclipse

framework to that system to upload the

automated test report.

 Researchers will enhance that bug report

security using classification and machine

learning algorithms. There are different types of

supervised learning and un supervise learning

algorithms are available.

The system will enhance connecting social media

platforms, then employees could improve

accountability of communication activities

related to bug management without large effort.

IX. CONCLUSION

The Software Development industry is constantly

looking for new ways to implement services and

always decrease time consumption and cost of

managing problems, while at the same time they

are struggling with some incidents. There is a

clear need for an automation bug management

process that combines previous separate

activities. The number of bugs or defects can

cause significant financial losses for both

software developers and customers. There may

be a high probability when small-scale

organizations haven’t a sufficient budget to

handle that situation. The proposed system has

been provided to the open-source platform-

independent application of highly customizable.

That application provides a less complex

function, and it has a user-friendly interface. It is

portable. The proposed system facilitates the

common communication platform. It has been

providing a facility to import technical reports as

evidence of a bug.

REFERENCES

Aleem, S., Capretz, L. F. and Ahmed, F. (2015)

‘Benchmarking Machine Learning Techniques for

Software Defect Detection’, International Journal of

Software Engineering & Applications, 6(3), pp. 11–23.

doi: 10.5121/ijsea.2015.6302.

Grottke, M. and Trivedi, K. S. (2007) ‘Fighting bugs:

Remove, retry, replicate, and rejuvenate’, Computer,

40(2), pp. 107–109. doi: 10.1109/MC.2007.55.

Hossain, M. S. (2018) ‘Challenges of Software Quality

Assurance and Testing’, International Journal of

Software Engineering and Computer Systems, 4(1), pp.

133–144. doi: 10.15282/ijsecs.4.1.2018.11.0044.

Iqbal, S. et al. (2020) ‘Determining Bug Prioritization

Using Feature Reduction and Clustering with

Classification’, IEEE Access, 8(August 2009), pp.

215661–215678. doi:

10.1109/ACCESS.2020.3035063.

Jalbert, N. and Weimer, W. (2008) ‘Automated

duplicate detection for bug tracking systems’,

Proceedings of the International Conference on

Dependable Systems and Networks, pp. 52–61. doi:

10.1109/DSN.2008.4630070.

Mujtaba, G., Mahmood, T. and Nasir, Z. (2011) ‘A

holistic approach to software defect analysis and

management’, Australian Journal of Basic and Applied

Sciences, 5(6), pp. 1632–1640.

Ohira, M. et al. (2012) ‘The impact of bug management

patterns on bug fixing: A case study of Eclipse projects’,

IEEE International Conference on Software

Maintenance, ICSM, pp. 264–273. doi:

10.1109/ICSM.2012.6405281.

Ortu, M. et al. (2016) ‘Expectations, outcomes, and

challenges of modern code review’, Proceedings - 13th

Working Conference on Mining Software Repositories,

MSR 2016, pp. 480–483. doi:

10.1145/2901739.2903505.

Serrano, N. and Ciordia, I. (2005) ‘Bugzilla, ITracker,

and other bug trackers’, IEEE Software, 22(2), pp. 11–

13. doi: 10.1109/MS.2005.32.

Shaffiei, Z. A., Mokhsin, M. and Hamidi, S. R. (2010)

‘Change and Bug Tracking System: Anjung Penchala

Sdn. Bhd.’, International Journal of Computer

Applications, 10(3), pp. 28–34. doi: 10.5120/1460-

1974.

298

Strate, J. D. and Laplante, P. A. (2013) ‘A literature

review of research in software defect reporting’, IEEE

Transactions on Reliability, 62(2), pp. 444–454. doi:

10.1109/TR.2013.2259204.

Tan, L. et al. (2014) ‘Bug characteristics in open source

software’, Empirical Software Engineering, 19(6), pp.

1665–1705. doi: 10.1007/s10664-013-9258-8.

Tenório, N., Pinto, D. and Bjørn, P. (2018)

‘Accountability in Brazilian Governmental Software

Project: How Chat Technology enables Social

Translucence in Bug Report Activities’, ECSCW 2018 -

Proceedings of the 16th European Conference on

Computer Supported Cooperative Work, pp. 1–27.

 ABBREVIATIONS AND SPECIFIC SYMBOLS

[testNG] automation test technology-based

report

[SQA] Software quality assurance

[NMF] Non-negative Matrix Factorization

[PCA] Principal Component Analysis

[MYSQL] Relational database management

system

[QA] Quality assurance

[COVID-19] Coronavirus disease

[Gov-IT] Government Information technology

[JDT] Java development tool

[Bugzilla] software quality assurance application

[ITracker] Open-source bug management

software

[JIRA] Software Management application

[JSON] Stands for JavaScript object notation.

AUTHOR BIOGRAPHIES

SMKH Hemali currently a 4th-

year student in Information

Technology department at

General Sir John Kotelawala

Defence University.

TGI Udayangi (B.Sc. Hons in

information Technology

(UOM), master’s in business

administration in Information

Technology (UOM)is a lecture

(Probationary) in General Sir John Kotelawala

Defence University. She has years of Experience

as Quality Engineering at DirectFN and Pearson.

