

144

ID 254

Classification of Software Frameworks Utilised in Water Resource

Management Modelling

RMM Pradeep1# and A Edirisuriya2

1Department of Information Technology, Faculty of Computing, General Sir John Kotelawala Defence

University, Ratmalana, Sri Lanka
2Department of Computer Engineering, Faculty of Computing, General Sir John Kotelawala Defence

University, Ratmalana, Sri Lanka

#pradeep@kdu.ac.lk

Abstract - The framework of a particular unit or a

system is the structure on which it is built or

founded. There appears a conflict in the

understanding of frameworks by water resource

decision-making professionals and software

development professionals. This contradiction

affects the quality of the software systems

developed for water resource management

decision-making. Hence, the objective of the

present work is to classify the available

understanding of frameworks to contribute to a

clear understanding to achieve better and

sustainable framework classification to water

resource management software system. The

present work carried out a systematic review and

conceptualised the principle of the framework

through an evaluation of interdependencies

between presently available understandings. The

reviewed environmental modelling frameworks

revealed the availability of four different

categories such as, Software language foundation,

Software on platforms, Techno-business

platforms, and Building blocks frameworks. This

classification allows the environmental system

modellers to understand which framework they

will develop and decide in which depth they need

to explore technology and business domains.

Keywords: software, system, framework, water

resource management, environmental

modelling, empirical literature review

I. INTRODUCTION

A. Monolithic to microservice

Monolithic software development refers to the

construction of traditional single-tire systems and

codes are carrying out the interconnections

between user interfaces, business logic and the

data that existed in a single platform. Even the

modification to the system carries a cost;

monolithic had been established as the primary

architectural approach to many business systems

due to development and implementation

simplicity. However, due to the dynamicity in the

requirements and advancement of technology,

present day trends move towards microservices

where user interfaces, business logic, and data are

provided and maintained separately as services

(Gos and Zabierowski, 2020).

Conceptually the microservices are utilised in

automating the complex water resource

management process (Wybrands et al., 2021). But

such systems need to be evolved from scratch due

to absent of fully pledged environmental

microservices, dynamics in management process

and stakeholder requirements. Hence, the

construction is still with the characteristics of

monolithic development. This influence the

developers to carry out trial and error attempts to

accumulate necessary constructional instruments

such as user interface guideline, development

methodology, security mechanisms while the

development (Pradeep and Wijesekera, 2017,

2015b; a). The common acceptance is, such

approaches are challenging to achieve the

required software qualities as the resources are

utilised to discover/invent the basic concepts and

artefacts repeatedly (Schmidt, Gokhale and

Natarajan, 2004). Nevertheless, due to no proper

exemplary works in water resource decision

making, it has to follow the monolithic approach

(Pradeep and Wijesekera, 2020).

B. Software Framework solves Software

Entropy

The monolithic architecture requires adding

different components to the developed system. It

145

results in uncontrollable software architecture -

software entropy, the internal levels of disorders

in complex or closed systems that get messy over

time, same as the second law of thermodynamics

(Canfora et al., 2014; Roth, 2017). Roth (2017)

highlighted two reasons for software entropy

which are common situations for the water

resource management systems as: the complexity

of the systems and communication requirements

across the complex distribution of the system in

multidiscipline.

However, as the software frameworks are being

developed to depict the subclasses and

components for the required scenario, those

facilitate better selection of appropriate

techniques and methods (Taligent, 1996 as cited

in Aksit et al., 1999). Then, software framework

could handle the foresaid complexity and

communication difficulties. Therefore, it can

consider that the most practical solution to

manage the software entropy in monolithic

development is the utilisation of software

framework which is more appropriate to the

scenario. Therefore, it required to select a suitable

framework for water resource management

problem and solution domains.

C. Problem Statement

Even though software frameworks are important,

when searching them, contradictory information

results from the existing literature. For example,

some frameworks describe the technical

implementation of the software codes in libraries,

while others describe the business artefacts'

architectural positioning in software frameworks.

Then the situation is getting more complex when

searching the suitable water resource modelling

software frameworks. As most of such literatures’

attention is being paid to the core area of water

resource management. Those are simultaneously

describing both the technical and business

structures under the heading of framework.

Hence selecting the suited is devious and

ambiguous as there is no proper classification in

the water resource modelling software

frameworks. As well as when considering the

terminology, it could observe an absence of

standardising classification. Therefore, it is vital to

demarcate the conceptual boundaries of different

software frameworks; then, researchers will

select or express the practising frameworks more

clearly.

D. Objective

The present work aims to classify the water

resource management modelling software

frameworks.

II. METHODOLOGY AND EXPERIMENTAL

DESIGN

H. Methodology
As the present work based on the knowledge of

the previous work, it systematically selected the

literature for the study. First, it googles the term

software framework and collects the primary

keywords of “design pattern, reusable

components, modularisation” from different blogs

and technical discussion forums. Then through

google scholar keyword search, it found the most

appropriate research articles. Going through such

papers’ abstracts, it isolates the essential papers

for the study. Then using the

connectedpapers.com, an AI website, it develops a

connected-paper graph, as shown in Figure 1.0. By

studying the literature in the graph links, select

the most appropriate literature works for

software frameworks.

As the water resource

management/environmental modelling

frameworks are not included in the previous

search, it searches the related papers through

Scopus data base using Publish or Perish 7® app

for the key words “water resource management

software, environmental modelling frameworks”.

From the 200 papers output, it selected only the

research articles which satisfied all the following

conditions: (1) describe a software tool or

software utilisation for a practical implementation

of environment/water resource management

decision-making process, (2) published in a

journal with impact factor more than 2.5, (3)

having more than 20 citations and (4) published

within the last 20 years. Further, it selected only

ten literatures as it can justify the ten are

substantial to demonstrate more than 85%

accurate view of the population according to the

study of Pradeep & Wijesekera, (2012) on the

water resource management tool evaluation

sample size research.

146

Figure 1.0 Connected Paper graph for Gamma et

al., (1994, 1993)
Source: Created through

https://www.connectedpapers.com/

I. Literature Review

1) Framework Definition: According to the

general dictionary meaning, the framework is a

supporting structure that can construct something

physically, such as a house or bridge. When such

construction becomes the conceptual structure of

decision, plan, organisation or workflow, the

framework consists of interrelated individual or

combinations of ideas, information, beliefs, rules,

and principles (Cambridge University Press, n.d.).

However, the three terms: (1) standard, (2)

guideline, and (3) framework, which carrying

similar meaning and using concomitantly.

Nevertheless, the standards are more mandatory

activities or commitments than the recommended

activities and commitments described in the

guidelines. Then frameworks provide a more

conceptual understating of what activities and

commitments are required to achieve the required

goals (ACRL, 2006; Nolan, 2019). Accordingly, the

frameworks are facilitating more precise control

and mindful amendments to the activities and

commitments.

2) Framework Motivations: Tosolve most software

development problems, Parnas (1972) introduced

a concept called “Information Hiding”.

Conceptually, information hiding is a series of

activities required to hide the software artefact's

design and implementation decisions, but its

interface reveals the functionality (Parnas, 1972).

Then, within the software, the code blocks were

reused, hiding design decisions to reduce

development, testing, and modification costs. The

concept was extended to the software system

levels, and with time, it reuses the predeveloped

software with modifications to solve the new

problem. In reusing, the reusable component of

the predeveloped software may be a set of source

codes or a required functionality providing

software modules or software units with required

inputs and outputs.

Design Patterns: However, with the rapid growth

of technology in many dimensions the nature of

the problems to be solved was got complex. Then

professionals must pay more attention to the

problem domain; hence, the solution

implementation needs to be carried out with less

effort. Therefore, the reusable software artefact

becomes popular, but with the advancements in

technology more sophisticated solutions were

developed. The researchers , Gamma et al. (1993),

suggested to express successful design structures

using the concepts in object oriented (OO) design

paradigm. The design patterns provide clear

guidelines for practitioners to arrive at decisions

through alternatives and trade-offs when

integrating the reusable software artefacts

(Gamma et al., 1994, 1993).
Object-Oriented Framework: Even higher-level

design patterns are catalogued the development

experience for easy teaching and communicating,

the software frameworks provide more concrete,

practical implementation capability (Gamma et al.,

1993). Generally, the software frameworks are

reusable semi-finished architectures which can be

utilised in the different application domain. The

reusability of software is an essential requirement

that initially fulfils with call-back procedures, then

functions and Abstract Data Types (ADT).

However, the object-oriented (OO) concepts-

introduced inheritance and dynamic approaches

assist in developing powerful frameworks which

facilitate the reuse of whole/sub software

systems, including the design. Therefore, the

frameworks could standardise the internal parts

to a specific domain (Schmidt, Gokhale and

Natarajan, 2004). Pree (1994) called this scenario

an application framework; however, the

programmer needs to develop such after critical

examination of the architecture and

implementation details of the software artefacts.

Therefore, he suggested utilising the meta-

patterns where it identifies hot spots (the flexible

components in the framework), white spots

(template method: defines the abstract definition

https://www.connectedpapers.com/

147

of the algorithm - Gamma et al., 1993), and grey

spots (hook method: provide communication

between classes - Wirfs-Brock et al., 1990). This

hot-spot-driven approach of Pree has made a

foundation for object-oriented software

frameworks (Pree, 1994, 1995; Pree and Sikora,

1997).

Component Framework: At the OO involve, it found

that one main problem associated with the

concept as, OO depends on the language and

sometime compiler. Then it required to redevelop

objects when needs to implement in another

programming languages. Therefore, to

independent from the language foundations, the

component framework was evolved. The

componentwear concept abides by the object-

oriented concept as its encapsulation is regarding

the data and methods amalgamation (Smith, 1997;

Pree, 1997). Then component framework

describes the capability of language-independent

components utilisation to remove the barrier with

the OO software framework. However, from the

design, the components are language-

independent groups of classes, but carefully

developed to provide functionalities that users see

as a black box and language independent (Scherp

and Boll, 2005).

Aspect-oriented Framework: Further, the

development efforts required to cater secondary

set of user requirements such as optimisation of

resources (memory, network, processor). Then,

this opens another dimension of requirements

that exceeds the need for reusability. Then

Kiczales et al. (1997), suggested the Aspect-

oriented programming concept. There the

“aspects” are properties of the system while those

behave like classes on OO design. This concept was

influenced to develop an aspect-oriented

framework based on the system's non-functional

aspect and business rules (Silva, Braga and

Masiero, 2004). These frameworks are dependent

on the fundamental hook method, then even

today, these frameworks are appearing in

practising (Kant and Gupta, 2015).

Metadata-Based Frameworks: This extended

the limitations of a small number of functional

variabilities in the aspects-oriented frameworks.

The use of metadata allows the extension of the

behaviours, and the framework facilitates dealing

with a large number of functional variabilities.

However, the framework describes the code level

implementation and metadata process (Guerra et

al., 2013).

Service-oriented Frameworks: This encapsulates

the deployable component models which provide

the service independent to the platform and

server. The components are built on the OO

architecture, but those benefit distributed

computing where inter-process communication is

required (Bieber and Carpenter, 2001).

Application Frameworks: This is not a diversified

concept, and it refers to the primary OO

/component frameworks describe earlier.

However, the application frameworks are

concerned with more abstract architectures

regarding the complex business units or

application domains (Fayad and Schmidt, 1997).

Then, all frameworks described up to this point

explain the code level implementation of the

frameworks. There the frameworks provide

quality software through four inheritances. First,

the modularity of frameworks stable and

standardise the volatile implementation

requirements, and secondary, reusability reduces

the programmer’s effort in repeating the

reconstruction of developed solutions. The third is

expendability of the framework achieved through

the popular hook method, while the fourth is

runtime architecture which ideally hooks the

domain-specific process to the invoked event by

implementing the reactive dispatching

mechanism.

2) Frameworks Classification schemas: When

reviewing the above literature findings,

frameworks are described under multiple

schemas. Out of those, “scope” is one of the

schemas which mattered in the evolvement of

different frameworks. Then Fayad & Schmidt,

(1997), classify the application frameworks into

three considering the scope as (1) System

infrastructure frameworks: a developer-oriented

local software architecture to standardise

language processing tools (2) Middleware

integration frameworks: A distributed and

commonly available software architectures of

distributed applications and components (3)

Enterprise application frameworks: A

comprehensive software architecture for

enterprise-level business application.

Accordingly, the middleware and enterprise

148

architectures are taken more time to develop from

scratch, but users can commercially acquire.

Further, the enterprise framework provides the

entire application’s infrastructure and

functionalities, which is absent at system

infrastructure and middleware integration

frameworks (Mili et al., 2002). Then the decision

of selecting a suitable enterprise framework is

dependent on the stability, adequacy, and

economy of the framework. In the same way,

Krajnc & Heričko, (2003) summarised seven

schemas including “scope”, such as approach (the

approach taken to develop framework such as OO,

component, aspect describe above), Extensibility

(framework facilitation of Whitebox, Gray box,

Blackbox, glass box), Standardisation (based on

the availability of standardisation and/or

standardisation authority), Granularity (the

simplicity of the implementation and utilisation),

License (free or commercial) and Format

(framework is either logical, physical, source code

or binary code). Then present work found this

classification schemas is substantial to the present

work.

Well-known Frameworks: However, apart from the

technical descriptions and classification, most

software engineers simply practice frameworks in

their day-to-day developments. Then these

frameworks technically available via an

application programming interface (API) and

supported by software development kits (SDKs).

Then using these frameworks, developers

automate the business logic of the solutions

without bothering the fundamental activities

related to communication, system software and

hardware. There are popular framework groups

suite with the need of the developers, such as (1)

Framework for web applications: These

frameworks are developed to handle the internet-

inherent characteristics such as unstructured-big-

dynamic data management, interoperability,

cross-platform management, communication and

interconnection (Jazayeri, 2007). These

frameworks are fundamentally built on different

language frameworks such as Angular on

JavaScript, Django on Python, and Larval on PHP.

(2) Data Science Frameworks: These frameworks

assisted the engineers to change the data into

action by facilities to data science-related

activities of Ask, Acquire, Assimilate, Analyse,

Answer, Advise, and Act (Andrade, 2015).

Examples are Apache Spark (multi-language

support analytical engine framework), PyTorch

(open-source machine learning framework) and

TensorFlow (end-to-end open-source machine

learning framework). (3) Frameworks for Mobile

Development: These frameworks are proving the

point to point (P2P) data management with

platform-specific and hybrid mobile app

development capabilities (Spindler, Grossniklaus

and C.Norrie, 2009). Ionic (open-source

framework for cross-platform native app

development), Xamarin (.net platform-based

framework), and Kivy (Python-based embedded

and enterprise applications framework) are few

examples of tons. (4) GIS Application

Development Frameworks: These frameworks

provide spatial data manipulation and

geoprocessing facilities to automate the nosiness

processes (Luaces et al., 2005). Few examples are

ArcGIS Web Application Developer Framework -

ADF (enabled Java and .NET to integrate GIS

functionalities) and QGIS Framework (open-

source framework for developing GIS

functionalities and its applications).

3) Framework Related to Water Resource

Management: As the present works main intention

is to classify the water resource software

frameworks, it critically reviewed seven water

resource modelling software framework and two

general environmental modelling software

frameworks to understand how those are

explaining under the term framework.
Water Resource Modelling Frameworks: This

section summarised the seven water resource-

related articles, with the major components

include in described framework.

Andreadis et al., (2017) developed a framework

for hydrological modelling and data assimilation

software framework, which can nowcast and

forecast using the hydro model. The framework

named Regional Hydrologic Extremes Assessment

System (RHEAS) is constructed with the concepts

related to data, GIS model, Hydro Model, Crop

model, and the users.

Sood et al., (2018) Smart flood management

framework is developed to integrate IoT, big data

and High-performance Computing for smart flood

management. The framework describes the IoT

layer, Fog layer, Data Analysis and Presentation

Layer.

149

Abebe et al.,(2019) developed the Coupled Flood-

Agent-Institution Modelling framework (CLAIM)

to assess the different scenarios for flood risk

effect on human and environment utilising Agents,

Institutions, Urban environment, Physical

processes, and External factors as the essential

components.

Tightly couple Hydro and GIS modelling

framework (PIHMgis) is developed by Bhatt et al.

(2014), for construct the water management user

interface. The Data development, Hydrological

model, Data analysis, Domain composition, Data

access library, and Shared geodatabase are the

framework's building blocks.

Wang et al., (2018) integrated the different

information sources to construct a high-resolution

urban flood model when developing a water

resource modelling framework. The fundamental

concepts in the framework architecture are DEM

Revision, Flood modelling and, Flood information

extraction (multiple data sources)

The Groundwater Visualisation System (GVC) is a

software framework that displays data and

animate the water information utilising a

conceptual hydrogeological model and third party

inputs. Cox et al.(2013) developed this framework

unitising the layers of Database, Data collection,

GVC package, Simulation outputs, 3D Geo-model,

Analysis, and Image/video.

Welsh et al., (2013) Source Integrated Modelling

System (IMS) is a framework that integrates the

models in river systems using layers such as

Graphic interface, command line, service,

application services, the simulation engine.

Web-based flood forecasting system (WFFS) is an

online multiuser-multi-expert interacting

framework for flood forecast whilst in an

emergency. Li et al., (2006) used Data conversion,

Flood forecast model, Calibration of the model,

Forecasting and Flood analysis as the main

components of the framework.

 Environmental software frameworks: Apart from

the seven articles, three others on environmental

software discipline. Out of them, Parker et al.,

(2002) developed Integrated assessment and

modelling (IAM), a framework that integrated the

major components of environmental modelling

such as Stakeholders, Scales, Issues, Disciplines,

Models. Further, Object Modelling System Version

3 (OMS3) is a software-oriented environmental

modelling framework developed by David et al.,

(2013). The framework components are described

as Products, Development Tools, Knowledge base,

and Recourses.

III. RESULT AND DISCUSSION

A. Software framework construction

Then when considering the software artefacts

frameworks, it can observe interdependent

concepts when developing different types of

frameworks. However, all the software

frameworks fundamentally describe how the

software artefact codes and behaviour should be

handled as a thumb rule. Figure 2.0 shows the

amalgamation of all the considered software

framework concepts.

Accordingly, it could review that the software

development industry's software frameworks are

always documenting and describing the software

artefacts' internal construction and

implementation details. Then the depth of the

different fireworks is varying from call-back

procedures to enterprise-level architectures.

Further, as those can be commercialised,

standards and licence types developed by

organisations.

B. Classification through schemas

Then it reviewed how the studied ten

environmental and water resource modelling

frameworks are describing those software

frameworks. According to the available

descriptions, it attempted to categorise them

utilising the seven schemas of Krajnc & Heričko

(2003) describe above. Then it found RHEAS,

WFFS and OSM3 frameworks are constructed

based on the software artefact-based frameworks.

As well as all frameworks could be categorised

into the same subclasses of five schemas as

extensibility: black-box, standardisation: absent,

granularity: simple, license: free and format:

logical format. However, apart from RHEAS, WFFS

and OSM3, all other frameworks show only

somewhat relativity to the characteristics of sub-

classes. For the “approach” and “scope” schemas,

frameworks were classified only considering the

150

conceptual relativity to the sub-class. See Table 1

for the classification analysis.

Figure 2.0 Interdependencies of Software Frameworks

151

Table 1: Environmental/ water resource Software Framework Vs Software framework classification
schema

Environmental/ water resource
Software Framework

Software framework
classification schema

Developed or
utilised Software
Framework Approach Scope

Smart flood management framework
(Sood et al., 2018) IF 2.79, Cites 49

Aspect* Middleware* No direct software
framework
described.
A conceptual
framework

CLAIM (Abebe et al., 2019) IF 4.8, Cites
25

Agent-based* Enterprise*

PIHMgis - (Bhatt, Kumar and Duffy,
2014) IF 4.8, Cites 107

Component* Enterprise*

Urban flood modelling FW (Wang et al.,
2018) IF 4.8, Cites 71

Aspect* Enterprise*

GVS - (Cox et al., 2013) IF 4.5, Cites 43 Aspect* Enterprise*
IMS (Welsh et al., 2013) IF 4.8, Cites 167 Aspect* Enterprise*
IAM (Parker et al., 2002) IF 4.8, Cites
315

Aspect* Enterprise*

RHEAS (Andreadis et al., 2017) IF 2.74,
Cites 23

Object-Oriented System
infrastructur
e

Developed through
OO Software
framework

Web-based flood forecasting system -
WFFS (Li et al., 2006) IF 3.88, Cites 46

Web-Based Enterprise Enterprise
JavaBeans (EJB),
CORBA, DCOM, and
Java RMI-IIOP

OMS3 (David et al., 2013) IF 4.8, Cites
165

Component Middleware Modular Modelling
System (MMS),
OMS1

Note: *relates conceptually only
 Environmental/ water resource Software Framework column contain impact factor (IF) of the
journal and citation received (Cites) figures of the article

Figure 3.0 Water Resource Modelling Framework Components in studied literatures.

J. Water Resource Software Framework

components

The first seven frameworks of Table 1 only

showing the general characteristics of the

software framework schemas. Hence, the present

work mapped the components identified as the

main building blocks of the framework by the

authors (Figure 3.0). Then it can observe all the

components are describing the tools, method and

techniques related to water resource data

capturing, processing, and visualising. Then

described components can be categorised as

“business objects and logics” in the water

resource and environmental modelling

discipline.

K. Water Resource Modelling Framework

Classification

152

Generally, the software frameworks enable

integrating all the required reusable components

to the problem/solution domain and explain the

interoperations and communication between the

components (Petty et al., 2014). According to the

present analysis, these components vary from

functions, procedures, ADTs, hotspots, object

models, ADS, IDL, containers, context, services,

non-functional requirements, business rules and

meta-concepts in different explanations. Then it

can realise that both the software and

environmental software frameworks are

considering both the software architecture and

system architecture (Gacek et al., 1995;

Medvidovic and Taylor, 2010). Nevertheless,

most of such frameworks describe the

conceptual framework of the system

architecture. Those consist of system

components, connections between them,

stakeholders, functional and non-functional

needs with specific needs, such as IoT, 3D

visualisation/simulation (need to fulfil to attain

the business requirements).

Then reviewing all these findings, it developed

the levels of the software frameworks as shown

in Figure 4.0. The dark colour rounded boxes

show the conceptual components for each level,

and White colour rounded boxes show the

examples. Each level’s conceptual ingredients

become the part of ingredients of the next higher

level. However, the utilisation of such a part is

optional and depends on the construction of the

upper-level framework.

Note:
• DODAF: Department of Defence
Architecture Framework of USA
• MODAF - Ministry of Defence Architecture
Framework, UK
• NAF: The NATO Architecture Framework

Figure 4.0 Classification of Water resource
management Software Frameworks

According to these levels, the conceptual

components of practical water resource

modelling software frameworks have appeared

in Level 3 & 4. Examples of two such software

requirement scenarios are shown in Table 2.0.

153

Table 2.0 Examples for Level 3 and 4

Scenario 1: Optimise the urban watershed
culverts

Level 3

Conceptual
component

Non-functional
requirement

Specification of
the Conceptual
component to the
scenario

• The maximum
diameter of the culvert
should be less than 4
meters.
• When placing
multiple culverts in the
same location, maintain at
least one culvert diameter
gap in-between

Considerations
for the above
Conceptual
component

• Related functional
requirements.
• What tools needs
• Most suited
Hydro model

Scenario 2: Urban runoff management

Level 4

Conceptual
component

Stakeholders

Specification of
the Conceptual
component to the
scenario

• The list of
stakeholders in according
to disciplines
• Non-functional
requirements of each
stakeholder

Considerations
for the above
Conceptual
component

• Manage the
conflict requirements
among the disciplines.
• Arrive the
sustainable solutions

Table 3.0 Classification of Water Resource
Modelling Software Frameworks

Class (Level) Main undertake

Software
Language
foundation
(Level 1)

Establishes software
foundation that includes
elements of the software
language. It provides the
facility to coding the
libraries via API.
Develop Software
Components

Software on
platforms
(Level 2)

Interrelates the
classes/modules to the
processes in technological
platforms.
Develop Software Packages

Techno-
Business
platforms
(Level 3)

Integrates the processes and
component which required
to interact withing different
technological and business
objective.
Develop Software Systems.

Building
blocks
(Level 4)

Assembles the major
components need to be
integrated to construct
multidisciplinary systems.
Develop Models of software
systems.

However, Level 1 & 2 describe the full technical

details that align with the software engineering

aspects. Then available frameworks can be

directly used, sometimes with delta addons.

Therefore, level 1 & 2 frameworks are

independent of the discipline-business rules and

aspects.

Then it can observe Level 1 to 4 are dependent on

each other but, Level 1 & 2 dominated by

technical aspects while Level 3 & 4 by

management/scientific aspects. Further, the

Level 1 framework is dominated by individual

software programming language foundation,

while Level 2 is the platform where the software

operates. In the same way, Level 3 frameworks

explain both the concerns on the individual

discipline (business model) and technical tools,

while Level 4 conceptualise the building blocks of

interdisciplinary aspects.

Reviewing all these empirical findings can

classify the software system frameworks for

water resource management as shown in Table

3.0.

154

IV. CONCLUSION

The term framework is utilising with different

meaning at different activities in the software

automation process. In the analysis and design

stages, it referred to the architecture of the

software. When in the coding stage, the

programming modularisation and construction

of optimised code blocks represent the

frameworks. However, when system automation,

the attention of the framework exceeds the

software automation to the conceptual

optimisation of the input-processes-outputs with

the business rules.

Then in water resource management software

automation, it required to build integrated

environment model. For that it needs to properly

plan the sustainable decision-making software

systems, utilising the optimised code blocks. A

close review of the present work in such

approach, it could isolate four framework levels

in construction of integrated environmental

model-based water resource management

software.

These levels are starting from the highly

technical descriptions- the concepts related to

foundation of the software construction. Then in

the following by level to level, frameworks

collaborate with the system's managerial and/or

scientific perspectives reducing the technical

details. The final level describes the managerial

and scientific concept integrations with less or no

technical detail. Then it can be considered as a

conceptual foundation of the software system.

Then with such understating, present work

contributes the framework-level classes as

(Level 1) Software Language foundation, (Level

2) Software on platforms, (Level 3) Techno-

Business platforms, and (Level 4) Building blocks

frameworks.

Then, the system designers and environmental

software modellers will be able to utilise this

classification as the fundamental guideline to

select or build the suited frameworks for their

water resource management problem/solution.

Then, it will reduce the conflicting

determinations on the frameworks.

However, as this classification is mainly based on

the conceptual relation of “software” and

“system” differentiations, the defined framework

levels are more valuable to software and system

developers in the environmental modelling

discipline.

ACKNOWLEDGEMENT

As the present finding is based on the collective

contribution of the previous works, the authors

pay their gratitude to all the authors who are

indicated in the reference section.

REFERENCES

Abebe, Y.A., Ghorbani, A., Nikolic, I., Vojinovic, Z.

and Sanchez, A., 2019. A coupled flood-agent-

institution modelling (CLAIM) framework for

urban flood risk management. Environmental

Modelling and Software, 111, pp.483–492.

ACRL, 2006. Guidelines, standards, and

frameworks. In: ACRL’s Guide to Policies and

Procedures. [online] American Library

Association. Available at:

<http://www.ala.org/acrl/resources/policies/c

hapter14#14.1>.

Aksit, M., Tekinerdogan, B., Marcelloni, F. and

Bergmans, L., 1999. Deriving Object-Oriented

Frameworks from Domain Knowledge. In:

Mohamed E. Fayad, D.C. Schmidt and R.E.

Johnson, eds. BBuilding Application Frameworks:

Object Oriented Foundations of Framework

Design. [online] New York, USA: John Wiley &

Sons Inc.pp.169–198. Available at:

<https://research.utwente.nl/en/publications/

deriving-object-oriented-frameworks-from-

domain-knowledge>.

Andrade, A., 2015. Data science framework

overview. [online] Data Science Field Guide.

Available at:

<http://datascienceguide.github.io/data-

science-framework> [Accessed 1 May 2021].

Andreadis, K.M., Das, N., Stampoulis, D., Ines, A.,

Fisher, J.B., Granger, S., Kawata, J., Han, E. and

Behrangi, A., 2017. The Regional Hydrologic

Extremes Assessment System : A software

framework for hydrologic modeling and data

assimilation. PLoS ONE, [online] 12(5), pp.1–22.

Available at:

<http://journals.plos.org/plosone/article/file?i

d=10.1371/journal.pone.0176506&type=printa

ble>.

Bhatt, G., Kumar, M. and Duffy, C.J., 2014. A tightly

coupled GIS and distributed hydrologic modeling

155

framework. Environmental Modelling & Software,

62, pp.1–15.

Bieber, G. and Carpenter, J., 2001. Introduction to

service-oriented programming (rev 2.1).

OpenWings Whitepaper, [online] pp.1–13.

Available at:

<ftp://81.20.17.8/books/Counterpart

07/Service Oriented Architecture and

Programming/ServiceOrientedIntroduction.pdf

>.

Cambridge University Press, n.d. Framework. In:

Cambridge English Dictionary. [online] Available

at:

<https://dictionary.cambridge.org/dictionary/e

nglish/framework> [Accessed 17 May 2021].

Canfora, G., Cerulo, L., Cimitile, M. and Di Penta,

M., 2014. How changes affect software entropy:

An empirical study. Empirical Software

Engineering, [online] 19(1), pp.1–38. Available

at:

<https://link.springer.com/article/10.1007/s10

664-012-9214-z>.

Cox, M.E., James, A., Hawke, A. and Raiber, M.,

2013. Groundwater Visualisation System (GVS):

A software framework for integrated display and

interrogation of conceptual hydrogeological

models, data and time-series animation. Journal

of Hydrology, [online] 491, pp.56–72. Available

at:

<http://www.sciencedirect.com/science/article

/pii/S0022169413002321>.

David, O., Ascough, J.C., Lloyd, W., Green, T.R.,

Rojas, K.W., Leavesley, G.H. and Ahuja, L.R., 2013.

A software engineering perspective on

environmental modeling framework design: The

Object Modeling System. Environmental

Modelling and Software, [online] 39, pp.201–213.

Available at:

<http://dx.doi.org/10.1016/j.envsoft.2012.03.0

06>.

Fayad, M.E. and Schmidt, D.C., 1997. Object-

oriented application frameworks.

Communications of the ACM, 40(10), pp.32–38.

Gacek, C., Abd-Allah, A., Clark, B. and Boehm,

B.W., 1995. On the Definition of Software System

Architecture. The First International Workshop on

Architectures for Software Systems, [online]

(April), pp.85-95. Available at:

<http://csse.usc.edu/csse/TECHRPTS/1995/us

ccse95-500/usccse95-500.pdf>.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,

1993. Design patterns: Abstraction and reuse of

object-oriented design. In: O.M. Nierstrasz, ed.

Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer.pp.406–431.

Gamma, E., Vlissides, J., Helm, R. and Johnson, R.,

1994. Design Patterns: Elements of Reusable

Object-Oriented Software. Structural Competency

for Architects. Pearson.

Gos, K. and Zabierowski, W., 2020. The

Comparison of Microservice and Monolithic

Architecture. 2020 IEEE 16th International

Conference on the Perspective Technologies and

Methods in MEMS Design, MEMSTECH 2020 -

Proceedings, pp.150–153.

Guerra, E., Buarque, E., Fernandes, C. and Silveira,

F., 2013. A flexible model for crosscutting

metadata-based frameworks. Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 7972 LNCS(PART 2), pp.391–

407.

Jazayeri, M., 2007. Some trends in Web

application development. FoSE 2007: Future of

Software Engineering - IEEE, pp.199–213.

Kant, T. and Gupta, M., 2015. Redesign of Hot

Spots using Aspect-Oriented Programming.

International Journal of Computer Applications,

117(20), pp.11–14.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C., Loingtier, J.M. and Irwin, J., 1997.

Aspect-oriented programming. Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1241, pp.220–242.

Krajnc, A. and Heričko, M., 2003. Classification of

object-oriented frameworks. IEEE Region 8

EUROCON 2003: Computer as a Tool - Proceedings,

B, pp.57–61.

Li, X.-Y., Chau, K.W., Cheng, C.-T. and Li, Y.S., 2006.

A Web-based flood forecasting system for

Shuangpai region. Advances in Engineering

Software, [online] 37(3), pp.146–158. Available

at:

<http://www.sciencedirect.com/science/article

/pii/S0965997805000931>.

Luaces, M.R., Brisaboa, N.R., Paramá, J.R. and

Viqueira, J.R., 2005. A generic framework for GIS

156

applications. Lecture Notes in Computer Science,

3428, pp.94–109.

Medvidovic, N. and Taylor, R.N., 2010. Software

architecture theory and practice. In: 2010

ACM/IEEE 32nd International Conference on

Software Engineering. Cape Town, South Africa:

IEEE Computer Society.pp.471–472.

Mili, H., Fayad, M., Brugali, D., Hamu, D. and Dori,

D., 2002. Enterprise frameworks: Issues and

research directions. Software - Practice and

Experience, 32(8), pp.801–831.

Nolan, A., 2019. Governance : Understanding

guidelines , frameworks & standards. [online]

Compliance. Available at:

<https://www.spector.ie/blog/understanding-

guidelines-frameworks-and-standards-from-a-

governance-standpoint/#:~:text=A framework

is a conceptual,and their appetite for risk.>

[Accessed 17 May 2021].

Parker, P., Letcher, R., Jakeman, A., Beck, M.,

Harris, G., Argent, R., Hare, M., Pahl-Wostl, C.,

Voinov, A., Janssen, M., Sullivan, P., Scoccimarro,

M., Friend, A., Sonnenshein, M., Barker, D.,

Matejicek, L., Odulaja, D., Deadman, P., Lim, K.,

Larocque, G., Tarikhi, P., Fletcher, C., Put, A.,

Maxwell, T., Charles, A., Breeze, H., Nakatani, N.,

Mudgal, S., Naito, W., Osidele, O., Eriksson, I.,

Kautsky, U., Kautsky aa, E., Naeslund ab, B.,

Kumblad ab, L., Park ac, R., Maltagliati ad, S.,

Girardin ae, P., Rizzoli af, A., Mauriello ag, D., Hoch

ah, R., Pelletier ai, D., Reilly aj, J., Olafsdottir ak, R.

and Bin al, S., 2002. Progress in integrated

assessment and modelling. Environmental

Modelling & Software, [online] 17(May 2001),

pp.209–217. Available at:

<www.elsevier.com/locate/envsoft>.

Parnas, D.L., 1972. On the criteria to be used in

decomposing systems into modules.

Communications of the ACM, 15(12), pp.1053–

1058.

Petty, M.D., Kim, J., Barbosa, S.E. and Pyun, J.J.,

2014. Software frameworks for model

composition. Modelling and Simulation in

Engineering, 2014.

Pradeep, R.M.M. and Wijesekera, N.T.S., 2012.

Selecting a Usability Evaluation User Group – A

Case Study the Development of a Hydro-GIS Tool

Aiming Urban Flood Mitigation. In: Civil

Engineering Research for Industry Symposium

(CERIS) – 2012. [online] Moratuwa: Universiry of

Moratuwa. Available at:

<http://dl.lib.mrt.ac.lk/handle/123/9922>.

Pradeep, R.M.M. and Wijesekera, N.T.S., 2015a.

Development of Security Stamp for Desktop

Spatial Data Modification in Unrestricted Access

Platform. In: 8th Intrernational Research

Conference. [online] Rathmalana: General Sir

John Kotelawala Defence University. Available at:

<http://ir.kdu.ac.lk/handle/345/1057>.

Pradeep, R.M.M. and Wijesekera, N.T.S., 2015b.

Modification of User Friendliness in to a

HydroGIS Tool. In: 8th Intrernational Research

Conference. [online] Ratmalana: General Sir John

Kotelawala Defence University. Available at:

<http://ir.kdu.ac.lk/handle/345/1138>.

Pradeep, R.M.M. and Wijesekera, N.T.S., 2017.

Predictive cum Adaptive Systems Development

Methodology for HydroGIS Tool Development.

10th International Research Conference - 2017.

Pradeep, R.M.M. and Wijesekera, N.T.S., 2020.

Incorporating Stakeholder Concerns in Land

Information Systems for Urban Flood

Management. Array.

Pree, W., 1994. Meta Patterns - A Means For

Capturing the Essentials of Reusable Object-

Oriented Design. In: M. Tokoro and R. Pareschi,

eds. European Conference on Object-Oriented

Programming- ECOOP 1994. Heidelberg:

Springer, Berlin.pp.150–162.

Pree, W., 1995. State-of-the-art Design Pattern

Approachess— An Overview. Technology of

Object-Oriented Languages and Systems (TOOLS

95), pp.1–11.

Pree, W., 1997. Component-based software

development - A new paradigm in software

engineering? Software-Concepts and Tools, 18(4),

pp.169–174.

Pree, W. and Sikora, H., 1997. Design patterns for

object-oriented software development.

Proceedings - International Conference on

Software Engineering, pp.663–664.

Roth, S., 2017. Clean C++: Sustainable software

development patterns and best practices with C++

17. [online] Clean C++: Sustainable Software

Development Patterns and Best Practices with C++

17. Schleswig-Holstein: Apress. Available at:

<https://link.springer.com/book/10.1007%2F9

78-1-4842-2793-0>.

157

Scherp, A. and Boll, S., 2005. A lightweight

process model and development methodology

for component frameworks. In: Proceedings of

the tenth International Workshop on Component-

Oriented Programming.

Schmidt, D.C., Gokhale, A. and Natarajan, B., 2004.

Leveraging Application Frameworks. ACM Queue,

2(5), pp.66–75.

Silva, M.T., Braga, R. and Masiero, P.C., 2004.

Evolução Orientada a Aspectos de um

Framework OO. In: Workshop de Manutenção de

Software Moderna.

Smith, R., 1997. Implementing a Typed Object

Calculus.

Sood, S.K., Sandhu, R., Singla, K. and Chang, V.,

2018. IoT, big data and HPC based smart flood

management framework. Sustainable Computing:

Informatics and Systems, [online] 20, pp.102–117.

Available at:

<http://www.sciencedirect.com/science/article

/pii/S2210537917302469>.

Spindler, A. de, Grossniklaus, M. and C.Norrie, M.,

2009. Development Framework for Mobile Social

Applications. In: P. van Eck, J. Gordijn and R.

Wieringa, eds. Advanced Information Systems

Engineering. CAiSE 2009. Lecture Notes in

Computer Science. [online] Berlin, Heidelberg:

Springer, Berlin, Heidelberg.pp.275–289.

Available at:

<http://www.scopus.com/inward/record.url?ei

d=2-s2.0-84903221029&partnerID=tZOtx3y1>.

Wang, Y., Chen, A.S., Fu, G., Djordjević, S., Zhang,

C. and Savić, D.A., 2018. An integrated framework

for high-resolution urban flood modelling

considering multiple information sources and

urban features. Environmental Modelling and

Software, 107(July 2017), pp.85–95.

Welsh, W.D., Vaze, J., Dutta, D., Rassam, D.,

Rahman, J.M., Jolly, I.D., Wallbrink, P., Podger,

G.M., Bethune, M., Hardy, M.J., Teng, J. and Lerat,

J., 2013. An integrated modelling framework for

regulated river systems. Environmental

Modelling & Software journal, Elsevier, 39, pp.81–

102.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L.,

1990. Designing Object-Oriented Software. New

Jersey: Prentice Hall.

Wybrands, M., Frohmann, F., Andree, M. and Marx

Gómez, J., 2021. WISdoM: An Information System

for Water Management. [online] Springer

International Publishing. Available at:

<http://dx.doi.org/10.1007/978-3-030-61969-

5_10>.

AUTHOR BIOGRAPHIES

Maj. R.M.M. Pradeep, BSc

(Hons) in MIS, MSc (Civil)

University of Moratuwa.

Maj. Pradeep is a Senior

Lecturer in Department of

Information Technology, Faculty of Computing,

General Sir John Kotelawala Defence University,

Sri Lanka. His research interests lie in HydroGIS

framework, System analysis and design and

software modelling & processing. Pradeep has

served on roughly twenty-four years in different

assignments in arbovirus vector research,

military IT resource management and Computing

and Geoinformatics research.

Dr. Ananda Edirisuriya, BSc

(Hons) (Maths) (USJ, Sri

Lanka), Postgraduate Dip

(Stat.) (UOC, Sri Lanka), MSc

(Comp. Sci.) (China),

PhL(Comp. Sci.) (Sweden), PhD (Comp. Sci.)

(Sweden). is a Senior Lecturer in Department of

Computer Engineering, Faculty of Computing,

General Sir John Kotelawala Defence University,

Sri Lanka. He was the former Head of the

Department of Computer Science, University of

Sri Jayewardenepura, Sri Lanka. His main

research interests are Model driven approaches

for Enterprise Information Systems Design, Data

Engineering, Application Frameworks and

Software Quality Improvements. Dr Ananda has

served more than thirty years in different

research, administration, and industrial

positions as a senior academic and consultant.

