Fast transform algorithm for legendre polynomial transforms

WA Gunarathna® and HM Nasir?

1Department of IT & Mathematics, Faculty of Engineering, General Sir John Kotelawala Defence University, Sri Lanka

2Department of Mathematics, Faculty of Science University of Peradeniya

tgunarathnawa@yahoo.com, 2nasirhm11@yahoo.com

Abstract-- Let P= {po,pl,...,p”f,} denote the collection of
the first n Legendre polynomials p, of degree kand let

XZ{xo.xl,...,xn_l} be a set of n sample points. The

Discrete Legendre polynomial transform (DLT) of an input
vector, f:(j;,,f,,...,fnfl) of size n is defined by

(L(0),L(1),--, L(n—1)},where L(I)= z 7.p,(x;) for

each j=0,1,....,n—1. For the given collection of n

Legendre polynomials, the straightforward method for
computing DLT requires an O(n3) computational cost. This

cost gets prohibitively increased for large values of n and
hence it is too much for practical purpose. This paper
describes an algorithm for fast computation of DLTs. The
fast algorithm computes the DLT of any input vector of size

non a set of mn arbitrary sample points in an

O((n log2 n)z) cost of complexity. The numerical
experiments carried out demonstrate that the fast algorithm
is faster than the straightforward algorithm when n =128

Keywords— Fast Fourier Transform (FFT), Orthogonal
polynomials, Legendre polynomial transforms, Linear three
term recurrence relation.

I.INTRODUCTION
Discrete Legendre polynomials (DLTs) have gained a great
popularity among the scientific community due to its
significant applications available in many areas such as
weather forecasting, statistical data analysis, electrical, and
telecommunicating engineering etc.

Legendre polynomials are solutions of the Legendre
differential equation.

d’p,(x dp, (x
(1-x?) &) _,, d()+n(n+1)pn(x)= 0.(1.1)

2
dx x

Let P= {po, DiseeosDo } denote the collection of the first n

Legendre polynomials p, of degreek .

Then these polynomials are mutually orthogonal functions
on the Hilbert space J? [— 1,1] with respect to the following
inner product defined by

(7.8)=] /(i)

(1.2)

where w(x) is some related weight function (the weight

function for the Legendre polynomials is 1) and the
corresponding norm of the function f is given by

IAl={f5) (1.3)
To put it another way,
<pi,pj>=c8,.j, (1.4)
where
Lt i=
i _{0 if i=j (1:2)

Is the Kronecker delta and ¢ is a constant.

Let X={x0.x1,...,xn71 }C[— 1,1] be any set of n sample

points. The Discrete Legendre polynomial

transform (DLT) of an input vector, f =(fo,f,,...,fn4) of size
n is defined by the collection:

2L Z0)...L(1-1)},
where

L(l):'gl)f/pz(x/) (1.6)

248

foreach /=0,1,...n—1.

It is not difficult to see that the whole computation involved
in (1.6) can be represented in the following matrix-vector
multiplication:

L(0)
rf) |
L(n-1)
Py (xo) b (xo) P (xo) Jo
Py (xl) b (.‘xl)

P (xl) S

P (‘xn—l) S

(1.7)

pol) py5)

In can be shown that the total number of operations
required to perform straightforwardly the matrix-vector
productin (1.8)is

T(n)=n3+n2—n=0(n3) n (1.8)

This polynomial complexity quickly becomes heavy for large
values of n and thus it causes severe computational
obstacles in many applications. Some tread has been
devoted to reduce this computational complexity. In the
context of computing the Fourier series on the 2-sphere,

some authors (Driscoll JR & Healy Jr DM.(1989) ; Driscoll JR

& Healy DM.(1994)) used an O((n10g2 n)z) algorithm of

to compute the Legendre polynomials transforms at the
natural Chebyshev points. Independently, the paper (Potts,
D, Steidl, G & Tasche M(1998)) describes a fast algorithm to

compute a discrete orthogonal polynomial transform of size

n at the Chebyshev points in O((n10g2 n)z) operations.
Furthermore, this algorithm has been improved to compute
a discrete polynomial of size n at arbitrary points which
lies in the closed interval [-1,1] in the same computational
complexity (Potts D (2003)

In this paper, we make use the following theorem appears in
Driscoll JR et al (1997) to design an algorithm to compute

the Legendre polynomials transform on any set of sample
pointsin [-1 1] in O(n login) operations.

A. Theorem 1.1. Letn be a positive integer power of 2.

If {h[(x)};l;lzo be a collection of functions that satisfy the

three-term recurrence relation

o (x)=(alx—|—bl)hz (x)_'_clhl—l (x), (1.9)
with the initial conditions: /, (x): Lk, (x): 0,
then for any input vectorf:(ﬁ),f,,---,f”_l), we can
compute the collection:
n-1 .
{Zof,g,(J)} , (1.10)
J= 10,11

in O((n log, n)z) operations.

The organization structure of this paper is as follows: in
Section 2, we present standard structured matrices and
efficient computational methods for their matrix-vector
multiplications. Section 3 describes the fast computation of
the Legendre polynomial transforms. Section 4 presents the
numerical results of the numerical experiments. Finally, we

give conclusions in Section 5.

II.EFFICIENT COMPUTATION OF STRUCTURED MATRIX -
VECTOR MULTIPLICATIONS.

In this section, we present some standard structured matrix-
vector multiplications and their efficient computational
methods without proof.

A. Fourier matrix

Definition: An n X n Fourier matrix, denoted by FE, , is
defined to be the square matrix given by
1 1 1
1w w'!
F, = : (2.1)
1 anl W(ml)(nfl)
—Zm'/n_

,Where w =e¢

249

It can be seen that the product of the Fourier matrix F,
with an arbitrary input column vector of size n yields the
standard discrete Fourier transform (DFT) , can be
performed more efficiently by the well known fast Fourier
transform (FFT)(Cooley JW. & Tukey JW (1965)).

Note thatF;l(F;l):(F;l)F;l =] and thuan_1 = E,

where F;, is the conjugate matrix of Fn .

The related matrix vector product of this inverse with an
arbitrary input vector is the standard inverse
Fourier transform (DFT). We summarize the material found
from (Cooley JW. & Tukey JW (1965, Tang Z. Duraiswami R. &
Gumerov NA.(2004).) in the following theorem without proof:

Discrete

1) Theorem 2.1: The DFT and IDFT each can be done in
O(nlog n) operations.

Note that the product of an n X n Fourier matrix and an
) 3n

n X1 vector can be done using at most ?logn

operations. |

B. Circulant Matrix
Definition: An n X n square matrix C has the following form
is called a circulant matrix.

G G 1
c c c
g G)
C=|" " (2.2)
¢ G Cy

,where C;,C;,"*".C are complex numbers.

n—-1

We denote the circulant matrix C of order by

C[Coacla""cn—ll

The circulant matrix processes constant element along the
diagonals from top left to bottom right and in fact, it can be
easily seen that the circulant matrix can be spanned by the
entities in the first row.

1) Theorem 2.2 Circulant matrix-vector multiplication.
The product of a circulant matrix of order n and a
column vector of size n can be performed in O(nlogzn)i

operations (Tang Z. Duraiswami R. & Gumerov

NA.(2004)).

It should be noted that the circulant matrix-vector product
Cy can be written as the cyclic convolution of the
sequences,

c:(covcla"'acn—1) and (yoa)ﬁa"'ayn—l)-

To put it another way,

n-1
z,=c*xy, = Zoymcj_m (2.3)
=

forall j=0,1,---,n—1

Now by the cyclic convolution theorem, we get:

DFT(C*y/)=(DFT(CO,c], G)DFT(yo’ylv""yn—l))
(c*y/'):IDFT(DFT(CO’CI’.“’CN—I)DFT(yO’yl’.”’yn—l))

’

This concludes that the circulant matrix- vector
multiplication can be performed using only three FFTs (one

IFFT and two FFTs) and one element —wise vector product.
3
Since each FFT needs;nlogn arithmetic operations, the

number of operations required performing the circulant
matrix -, vector multiplication is

9n

T(n):3><3?nlogn+n=?logn+n (2.4)

Thatis,T(n) is O(nlogzn) m

C.Toeplitz matrix
A Toeplitz matrix of order n is defined to be

Ly 4 L
r=| 0 " (2.5)
Lo T)
We will denote the Toeplitz matrix of order n by

T[t—n+1a"'ato>""tn—1]

’

where t_, 41, .., tg, .. tn_q are complex numbers.

250

A Toepltz matrix can be spanned by its first column and its
first row. Besides that, the entities of the Toeplitz matrix are
constant along the sub diagonals parallel to the main
diagonal.

1) Theorem 2.4:Toeplitz matrix -vector multiplication
The product of a Toeplitz matrix of order n and a
column vector of size n can be performed in O(nlogn)
arithmetic operations (Tang Z. Duraiswami R. &

Gumerov NA.(2004)).
Proof

Let T be a Toeplitz matrix of order n and y be a column
vector of sizen.

Define the circulant matrix C of order 2n as follows:

(s 7

, Where S is a square matrix of order n given by

(2.6)

0 t—n+1 t—l
t 0 t
s=|"" 7 (2.7)
ot 0

Also let z = (g) be a column vector of size 2n , where O

denotes ann X 1 zero matrix.

Now we get

(T S\(y _(TY)
CZ_(S T)(O)_ Sy (28)
Now this concludes that the Toeplitz matrix- vector
multiplication cam be done in O(nlogn)
operations.m

arithmetic

It should be noticed that only three FFTs of order 2n each
and one point-wise multiplication of sequence of length are
needed to perform the Toeplitz matrix-vector multiplication
and that the total number of arithmetic operations is equal

to: 3[@ log Zn) +2n=9nlog2n+2n

=9nlogn+11n

=O(n logn) .u (2.9)
D Vandermonde matrix

Definition : A Vandermonde matrix of order n is defined by
the following marix.

1 1 e 1 1
ZO Zl Zn—2 Zn—l (2 10)
V= A
n-2 n-2 n-2 n-2
Zo Z1 o Zn-2 Zn-1
n—1 n—1 . n=2 (n—1)
Zo Z1 Zn-2 Zn-1

The Vandermonde matrix of the complex number

24,2155 Z,_; is denoted by

V[Zo Z Z;H]-

The material found from Driscoll JR et al (1997) and Moore
SS et al (1993)), we summarize in the following theorem
without derivation.

1) Theorem 2.5:Vandermonde matrix-vector multiplication
The product of a Vandermonde matrix of order n (as
defined in 2.5) and an arbitrary input vector of size n
can be performed in O(nlog? n) operations.

II. LEGENDRE POLYNOMIAL TRANSFORM

The key objective of this section is make use of Theorem 1.1
to design a fast algorithm to compute Legendre polynomial
transforms on a set of arbitrary sample points.

A. Corollary 3.1.

Let {po (x)a P (X),' P (X)} be a collection of

Legendre polynomials and let

{xo,x,,---,xn_l} be a set of n arbitrary sample points in
[-L1].

Then the n -point the Legendre polynomial transform of an
input vector f =(f(,,f,,~~-,fn_,) , defined by

1ot

(3.1)

1=0,1,++,n=1

can be computed in 0(1’1 10g2 n) operations.

Proof

251

In this proof we assume that a single operation holds the
combination of one multiplication and one addition.

et Ll)=57p,x,) forI=01n-1. (32
=

Then we must calculate L(O), L(l), - -,L(n - l).

Let {Po (x)» D (x), P (x)}

Legendre polynomials.

be a collection of

Then according to Farvard’s theorem, these orthogonal
polynomials satisfy the following linear three term
recurrence relation (Chihara TS (1957), Inda MA et al.
.(2001)):

21 +1 [
) ()= Tl xP, , (x)- mP,H (x)

(3.3)

Let xi(j =0,12,...,n— 1) denote a typical sample point.

Then by substituting x = X; into (3.3), we get,

Bl (x(,)= % X B (x(,.)_ ﬁ B (xj) (34)

be a vector whose k™ element,

z"(n-1)
Zg”)(k) is defined by the following sum for each
-on—1.

Z(k) = <f,(kxj)kpl(xj)> - gﬁ'(kxj)kpk(x.f) s

foreach £=0,1,...n—1.

Here we have introduced a scalar factor A to control
overflow (underflow).

Then we see that:
70 (k)= <fa (Mj)k> = jz:)f/ (7‘ X f

o (3.6)
200)=(r.ple,)= £ 7,p.x,)

Now all the terms in the sequence {Sf/p, (xl.)}
j=0

1=0,1,--,n-1

can be calculated by calculating all the terms in the
sequence {7 (0)},..,..

Now, from (3.4), we get:

Zgﬂ (k)z <f, xljc' Pia (xj)>

(b)5 k)]

_20+1

S e o)

Hence we get the following recurrence:

21 +1 /
(n) _ (n) __ ") 3.7
702 (k) An? (k+1)-=20lk) (37)
Computation of the terms in the sequence
{ZS")(O)}[:O’_‘_J,?1 .can be done under three stages as
explained below:
Computational Stage 1: Computation of Zg”) .
n-1
Z00)) [2]
n—1
Zgn): ZE)”)(I) — ;}f/ (/bC/)
z9'n=1)) | § 7 (2,)"
j-0
1 1 LY A
— ﬂ"x() ﬂ"xl ﬂ"xnfl j]
(e,)™ (e)™ e ()N

This is a Vandermonde matrix-vector multiplication of order
n and hence z!" can be computed more efficiently in

O(n(logn)z) operations using Theorem 2.5. In particular,
we get

(3.8)
Computational stage 2: Computation of z!”

It can be seen from (3.7) that

252

700~)26+ 39 1o 0y 20

o1 o)z
I+1 : : (3.12)
Now, 00 - 1)zM(n-1)
7" (0) z(1)
g 20 (1) 200)
: A (3.10) Now define a new sequence Z'g") (120,1,---,71—1)
Z{")(n - 1) Zﬁ”)(n) such that:

From computational stage 1, we have Zo(n)(k) for all Z”o(ﬂ):Zo(n)
k=0,1,---,n—1.Therefore, now ZE”)(k) for each

k=0,1,---,n—2 can be done at most n additional

Z’v](") — Zl(n)

ti N ticular, t
operations. In particular, we ge 0 e 0 ZS”)(O)
L(1)=2z"(0) (3.11) 71(0) 0 ol Z"()
zn@) | 20+1 .
: Al +1)
. . 201 —1) 0
Computational stage 3: Computation o Zg”) for 1+
00 - O\z"(n-1)
[=23,-,n—1. !
We first make the following notation:
0 0Y z"(0)
The vector obtained by leaving the lower half of the vector ~ L 01 - 0 ngl)(l) (3.13)
27(0) 77(0) [+1] : : . :
(2m) (m) 0 0 -« 1TAzZzMn-1
Zgz,”): A : (1) is denoted by ng): Z) ' (1) / 1()
207 (2m 1) 20 (m —1) where [=1,2,---,n—2.

and In short form, we can write

R"®(,), which is defined by (3.16), is a square matrix of
o2 2+ o L (3

order 4m for m:2,4,8,---,%. o 7\.(Z+1) Lo+
From (3.7) we have where
2[+1 / 1 0 -+ 0
(k)= Dk +1)=) (ke 5.11
211(k) /1(1+1)Z’ (e+1) 1+1Z"() 01 - 0 511
I=|. . . |, the n X n identity matrix, and
We can further write Zgﬂ in the following matrix form: A
0 o0 - 1
01 - 0
0 0 0
(n) (n) : : :
Z’*‘(O) 10 0y z: (l) N=|: - | then Xnnilpotent matrix
Zm(l) _ 204110 1 -+ 0 ZS")(z) 0 0 - 1
: A0+ E e)
(n) (n) 00 -0
z(n 1) 00 - 1)z"(n)

containing ones on the super diagonal and zeros elsewhere.

253

Now, by (3.12) and (3.13) , we have , Where
7(k)= 7z (k) fork =0,1,---,n—2 and ~ R*(-p-11)
0 1 0 /
:—LI 2 +1 N{_l;ll Zl—lNJ
I Al

I+1° Al+1)
o) ! 7
AR [+1 A (1+1) Z, I-p / 21—2p+1N (3.16)

Cl-p+l All-p+)

fork=0,1,---n-2

We can use the fact that Z,")(k): Z’S”)(k) for
Then we can establish the following matrix equations on k=01,.n—2 tofind 2"
— YUl ’ Lo

any positive ineger p.
" 0 s " The matrix R‘z”)(l—p—l,l) is comprised of p+1 factor
z." | 1-1 2-1 Z," matrices for which each factor matrix contains four nxn
N (Toeplitz matrices. Since the product of two Toeplitz matrices
is again a Toeplitz matrix, the matrix R*(/ — p —1,1) can be

0 I z1 @ reduced to the form
= 1-1 21 -1 =2
BTN VA 70 o
RN -p- 1,1):{ 1(,,> T2<,1>]’Where
0 3 4
v () (n)
G ST T BN) . .
G - ﬁ[/1(1 1)N 7 o T." isan n x n Toeplitz block fori =1,2,3,4 .
1-1 — — -2
Then we see that:
=22y A z"\ (1" t"Yz.,."
-1 -1 N\ 08 il PO)
Z/+| Ts T4 Z/—[)

Wy)),)

_ Tl Zl—p—l +T2 Zl—p

= W) e,) 3.17)
"z, War"z

I-p-1 I-p

v) 0 1 (n)
Zoo Al 12p o 2a—2pa1 | P
VA (n) — I 7 (n)
e I-p+1 AMl-p+1) e This means that we can obtain the vectors Z,” and Z, "

I+1

from the vectors Z, " and Z,,p(") using four Toeplitz

1-p-1
From these matrix equations, we may get the following: matrix vector-multiplications.

71 0) 0 I
A B 2 +1 -1, 21,
A I+1 A+1) / Al In the case where / =n/2 and p+1=n/2 , we get from

0 I (z (,1)] (3.12)

_l-p] 20-2p+1
I-p+17 Al-p+1)

n (n)
= — pl) n\Z
A G B
n 1

Z
! _ (211) _ _ I-p-1
2 |=R (1-p-11 7 0| (315)
I+1 I-p Now applying four Toeplitz matrix-vector multiplications
into (3.18,) we calculate:

254

(3.19)

(n)
Y21}z 0-740)
2 ", 5+1
2

Now the entire problem of size # is split into two sub
problems of size n/2 each.

Then{z | I=2 41, n—land m=2,2 ... 2
2 4’8

2, ,---,Z}are
4

8
computed by applying (3.15) to Z(,:') and Z(n”) and
2

=]

and {Z'S'")H:Z’---’g—land m=

7z and 7", respectively.

Now in the case where [/=n/4,p+1=n/4 and in the case
wherel=3n/4, p+1=n/4, we get from (3.12)

' (”/)
z," 7 o)
n _R(n/z) 0 2 0
Z',, (n2) |~ ’4 Z]("/z)
—+1
! (3.20)
Z'“ (n/2) Z, (w/2)
T _gw(1 ,3_” 3
Z'3” (n/2) 2’ 4 Z” (n/2)
7+l E“
Now we get from (3.20),
n (n12)
4 " B
4
n (n/2)
L(H]:z (0)=74(0)
L 2
3.18)

At this level we have only the two sub problem of size
n/2 and the next stage is done by again splitting each of
each. That
is, in this level there are four sub problems of size n/4

those sub problems into sub problems of n/4

each.

Now putting / =n/8,3n/8,51/8,7n/8 and p +1=n/8 into
(3.12), we get the following:

7 (n/4))
B 4 Zo
o) :R(/)[()’%j(z (nmJ
Z.x (o4 7)
3n . 3 u
; (w4 —R("/)[%’gnj o
Z.8 (n/4) 7) (3.21)
ﬁ /4 5 2
S |ZRY)(%gnj 7
Z.R (o) PR
I NETI) et
) R("/)(Tn»?nj PR
Now from (3.21), we calculate:
. (n/4)
2] -z, ©-740)
8 n 3
8
(n/4)
L +1j =7 (0)=2z\""%(0)
%Jrl rak
() -2470)-7570
8 n 5
L %"Hj =25,(0)=2%,(0)
(3.22)
S5n
(3] =760)-2420)
8 = RS |
8 8
1 3+1)=220)= 24.20)
7 (n/4) ’
() -z, 0-740)
8 Tn —
? 8
Tn (n/4)
L+l =z (0)=z%(0)
8 E-v—l 8 !
8

Continuing the similar manner we can obtain the rest of the
vales of L(I)= z(0). m

255

1). Computational complexity of the algorithm:

Let T(n) denote the number of operations required to

compute {Zg”)(O)}lzz,”_’nfl, from Zg”)and Zg”).

At the first , having left out the lower halves of the vectors

ZO("),ZI("),Z (n), and Z, ("), we possess two sub
—+1

n

2
problems of size n/2 each. Now each of these sub problems

. n .
requires a total of T(E] operations.

To compute 7! and 2(7”11 from z"and Zg”) from (3.18,)

n
2 2

perform four Toeplitz matrix-vector

multiplications of size n and thus it requires

we have to

4(9n logn+1 ln) operations owing to (2.9).

T(n)=36nlogn + 44n + 2T(%j

=36nlogn + 44n + 2T(§j for n>2 (3.23)

Now iterating on (3.23) shows that:

T(2)=27(1)+36x2x1+44x2
T(4)=2T(2)+36x 4x2 + 44 x 4

T(8)=2T(4)+36x8x3 +44x8

)

71 2| =21 2 |+ 36x Zx(k—2)+ 44x 2
4 8 4 4

27| L4+ 36x 2 x(k—3)+44x 2
6 8 8

—

12 l=2r 2 +36><2><(k—1)+44xﬁ
2 4 2 2

And we see the following derivation:

T(n) =

2[2[2&[2)+lsgoc—z>+44.§j+s6g<k_l)+44.g]]

+36nlogn + 44n
- 23T(2—’2)+36n[(k—2)+ (k —1)+ k]+44n x2

= 23T (&) + 36n[(k — 2) + (k — 1) + kl+44n x 3

Continuing the same manner, we ultimately obtain:

T(n)=2"T(1)+36n(1+2+3+---+k)+44nxk
=36n(1+2+3+---+k)+44nxk since T(1)=0.

=36n@+44nxk

2 2
< 36{%} + ddnk

=36nk* +44nk since k>1.
Since k =logn, we get,
T(n)<36nlog® n+44nlogn whenever »>1.

According to Theorem 2.5, to compute ZO(”)we require at
most 18nlog’ n + 3nlogn operations (Driscoll JR (1997) et
al.). Also the computation of z" from (3.9) requires at

most 2711 operations.

Therefore, to compute both z!" andz!", we require at

most 18nlog’ n+3nlogn+2n operations.

Therefore, the entire problem of order 7 requires at most

44nlogn +36nlog’ n+18nlog’ n+3nlogn +2n
=2n+47nlogn+54nlog® n operations

Now we see that
2n+47nlogn + 54nlog® n<103nlog’ n

whenever n >1.

256

Hence,

O((nlog, n))* .m

the computational cost of the algorithm s

2) Properties of the matrix R = R(z")(l —-p- l,l)

1. The matrix R can be reduced to a 2nx2n matrix
containing four Toeplitz blocks of order n each. Note that
the multiplication of two Toeplitz matrices yields a Toeplitz
matrix and so does the sum of two Toeplitz matrices. Hence,
by block -wise multiplication of matrices in (3.16), we can
easily see that the matrix R reduces to 271X 21 matrix
containing four Toeplitz blocks of order n each.

2. Given two matrices of the form
R, =R(m)(j,j + S), R, =R(m)(j +5.7+ 2s) generate
efficiently a matrix of the form R, = R(zm)(j, J+ 2s).

Let N be the Nilpotent matrix of order n given by

0

0 - 0

N: . ?
00 0

containing ones on the supper diagonal and zeros
elsewhere.

Thenweseethat N" =0 forn=12,---

Consider an upper triangular Toeplitz matrix of order n
given by
a() al n-1
T(n) — 0 a, a,,
0 0 a,
We now see that
1 0 0 0 1 0
) o1 -0 00
T" =a,| . . NEXAN +--
00 1 00 0

1
0
ta,, .
00 - 0
=a,+a,N+--+a, N"' (3.23)

This shows that an upper triangular Toeplitz matrix of order
N can be written as an (n-l)th degree polynomial of the

Nilpotent matrix NV, whose coefficients are the entities
(entities in the first row) of the Toeplitz matrix.

Now each of four Toeplitz matrices in R, = R(m)(j,j + S)
may be written as a polynomial of the Nilpotent matrix ¥
whose degree at most s .This is because of R, has a matrix

product with s factor matrices. To see it,

0 1 -0 1
R =|__J+s 2]+2s+1N _j+S—11 2J+2S—1N
Jj+s+1 JHs+1 j+s j+s
0 I
o j+1 2j+
EARYREYAESY
j+2 j+2

§=2
_(alo +a ,N+---+a, ,N

b, +bHN+-~-+bMN"]
s—1
cot+te N+--c N

d,+d N+---+d N’

Then we get

fa,ka
= L . (3.24)
,;)ClkN xd N

In another ward, R, is a polynomial matrix of order 2.

Similarly, we can write R, and R, as polynomial matrices

of order 2 as follows:

.0 . [. 0 .]
R, = 7']+2s I 2{+4s+1N _14.—2s—1[2].+4S_1N
J+2s+1 J+2s+1 Jj+2s Jj+2s
0 1
. +s+1 2j+2s+3
- =y
Jts+2 Jts+2

257

_ a, +a,N+--+a, ,N°7° b,+b,N+---+b, N oo o[I
Cyo +021N+"'CZHNH dzo +d21N+"'+d2sNX L; ’X % 571
n n 3n n Sn 3n Tn
R10.— R|—,— R|—,— R|—,—
and hence we get (8) 1(4 8] :[2 8] ;[4 8)
s=2 k s—1 k
Ya, N° Yb, N R02) R4 - R{n-4n-2)
R, =3 (3.25)
k k
2N >d, N
k=0 k=0

Figure 3.1:Pre-computed storage required for the algorithm.

0 1 0 1
= i+ 2 2j+4s+1 j+2s—1 2j+4s—-1
RS_{— JHES g AT N][—J+ STy 2EE N | Using property 2 of 4.2 Properties of the matrix

J+2s+1 J+2s+1 j+2s J+2s (20)
R=R"" (l -p —l,l), we may generate element in the

above array.

0 1 :
| j+s+l , 2j+2s+3N 1) Method of computation of the storage
jts+2 Jts+2 Step 0: First compute the set
(0 ! J for j=12 2
0 1 0 1 sfor j=1,2,---,n— .
Jts p 2424l) js-lp 2j425-1 ¢l aN+bl
JjH+s+1 j+s+1 Jj+s J+s
0 I Step 1: Compute the set
.].+11 2.]+3N)
J+2 j+2 {R<4’(2j,2j+2)|for j=0,1,,~~,5—2},where

5=2 k s—1 r 5=2 1 s—1 r
%aMN Eﬂbsz %a,,{N Z‘)b”{N R(“)(Zj,Zj +2)
AZ:;]CMN" g)deN" e, N* >d,N*

k=0 k=0

0 1 0 1
| 2j+2 4j+5 2j+1 . 4j+3
_ I N| - 1
Then we have 2j+3 2j+3 2j+2 2j+2

R, =R,R (3.26)

27M

Here R“(2,,2j+2) may be computed more efficiently

This means that we can obtain the polynomial matrix R3 using the method of - polynomial multination.

of order 2 as a product of the two polynomial matrices R, Then:

d f order 2.

and R, of order a. Theset

Here we can employ the fast polynomial multiplication {R(4)(2j,2j+2) for j:0,2,4,--~,£—2} gives all the
2

technique to efficiently compute R3 .We use this property) .) .
elements required to be inserted in the bottom (first)

level of the array.
b. The set

to compute the whole storage of the algorithm

B. Computation of the storage of the algorithm

{R(4>(2j,2j +2)| for j= 1,3,5,--~,£ —3} is required to
Now it can be easily seen that we need to compute all the 2

matrices in the following array to fulfill the storage compute the elements required to be inserted in the
requirement for Algorithm the algorithm. second level of the array.

258

Step 2: Compute the set
{R(”(4j,4j+4) for j=o,1,,~~,§—z},where

RY(4/,4j+4)=RY(4j+24j+4)RV(4/4)+2)

for j=0,,2,-,2~2.
4

This can be calculated more efficiently using the fast
polynomial multiplication method.

Then:

a. The set {R(")(4j,4j+4) for j:0,2,4,~~,%—2} gives

all the elements required to be inserted in the second
level of the array.

b. The set {R(8>(4j,4j+4)for j:1,3,5,-~-,%—3} is

required to compute the elements in the third level of
the array.

n
And employ the same procedure until we get R(zn)(o, EJ .

3) Computational complexity of the storage

All the matrices in the tree of Figure 3.71 can be computed

in O(n(log2 n)z) operations.

Poof

To compute R(")(O,gj from R("u)(o,%j and

n 3n
R(”m(E,I), we have to perform eight polynomial

multiplications with two polynomials. The degree of each

n
polynomial is (Z - 1] at most. Therefore, it requires

3n n\) 5Sn)
8 —log,| — |+ — |+ 2n operations at most. Here the
4 4 4

additional term 271 comes from the addition of

polynomials.

Let T(n) denote the number of operations, at most,

required to compute the whole storage.

Then, we have:

T(n)= 2T(ﬁ] +8 3—”10g2(2j 22\ on = 6nk.
2) 7 4 4)" 4

Iteration on 7 shows that

T(n)=6njk® —(1+2+---+k)]
:6;{1«2—%(1«“)}

=3nk* —3nk
< 6nk’ since k > 1.
Since k =log, n, we get,
T(n)< 6n(log, n}
whenever n > 1.

This shows the computational complexity of the storage is

O(n(log2 n)z) L]

Algorithm 3.1 : Pre-computation of the data structure of

Legendre polynomial transform

INPUT: » isa power of 2

ouTPUT: R™(0,2),--,R™ (n —4,n—2),- ~-,R(2”)(O, gj

COMPLEXITY : O log’ n)

STAGES:

259

0. Inserting data to the leaf nodes of the intial

tree.
for j=1to n—-2 do

READ 0 !
c,I aN+ b/.]

endfor

1. Inserting the remining data to the node of
the intial tree

for i=log,n—1to 1 do
for j=1to 2'-1do
R, < Initialnode (i+l,2j —1): polynomial
matrix of order 2
R, < Initialnode (i+1,2j): polynomial

matrix of order 2

Obtain the four polynomials p,q,r,and s by applying the
fast polynomial multiplication on the entities of R, and R,
p<R,(LDR (L1)+ R, (1,2)R, (2,1)
g R,(LYR (1,2)+ R, (1,2)R,(2,2)
r <R, (2R, (L1)+ R, (2,2)R,(2,1)
s <R, (2R (1,2)+ R,(22)R (2,2)

R (_(p q]
r S

Initialnode (i,j)(— R,

endfor

endfor

Algorithm 3.2: Fast computation of Legendre polynomial
transforms

INPUT:f = (fy, -+, f_1): Vector with n isa power of 2.

OUTPUT: F = (F(0),---, F(n — 1)):Legendre polynomial
transform of F.

COMPLEXITY: Ofnlog’ n)
STAGES:

0. Compute the vector z\

Z" «Vf"; compute by performing the fast

Vandermond matrix-vector multiplication

260

for k=0 to n-1do

20(0) 2 200+ 1)+ 2o 20(k)
A,)

0

Z0 < (z2(0), -+, 2 (n—1))

endfor
(n)

newrootnode (—(?J ; inserting data to
A

the root node of the new tree.

Inserting data to the remaining nodes of the
new tree

for i=1 to log,n—1 do

for j=1to 2"
n
m<«— —
X
a <—newnode(i — 1,j)
b < Transpose of (a(1),-,a(m))
¢ « Transpose of (a(2m + 1),---,a(3m))

[bJ

d «

c

R «Initialnode (i,j)

Obtain the following vectors » and v by
applying the fast polynomial multiplication:

R(l,l)(— the first element in the first row of

the polynomial matrix R

R(1,2)<— the second element in the first

row of the polynomial matrix R

R(2,1)<— the first element in the second row
of the polynomial matrix R
R(Z,Z)(— the second element in the second

row of the polynomial matrix R

a(l) a(2m + l)
ueRLY) |+ R(2 :
a(2m) a(4m)

a(l) a(2m + 1)
veR@21) 1 [+R(22 :
a(Zm) a(4m)

X <—Transpose of (u(1),--,u(m))
y « Transpose of (v(1),---,v(m))

e()
Y Array length

() t(SA) t(Fast)
newnode(i,2j — 1) « d 16 0.05 039
32 0.08 0.44
newnode(i,2/) e 64 0.23 | 0.49
128 0.76 0.73
E <—newnode (log,n—1, ;) 256 4.41 1.51
F(evenindex) < E(1) 512 30.82 4.27
F(oddindex)« £(5) 1024 247.62 | 14.59
Return 2048 1920.60 | 54.52
4096 * 213.92
FFO - F-t) 8192 | 865.48

endfor
Table 4.1: CPU times taken by each algorithm for

endfor Example 4.1

25 T T

— Straightforwadr Alg.
— Fast Alg,

20
IV. NUMERICAL EXPERIMENTS AND RESULTS

15

The base 2 logarithm of time in milliseconds

In this section, we present numerical results of numerical /
experiments carried out via numerical examples, in order to 10 _— —

test the efficiency of the fast algorithm for the Legendre —

polynomial transforms. All the computations were carried 54/5 . . . : . .
out on a personal computer with Intel(R)Pentium 2.1 GHz The base 2 logarithm of amay length (n)

processor, with 2.00 GB RAM, 64 bit windows 7 operating
system using MATLAB version 12 codes. The fast and direct
algorithms were implemented using tree data structure
array in MATLAB. We denote the CPU time taken by the
straightforward algorithm by t(SA) and the corresponding B Example 4.2.

time taken by the fast algorithm by t(FA). The CPU times In this example, we take f = (1,2,3,...,}1)35 the given
mentioned each of the following tables are given in seconds input vector and

and both array length(n) and CPU times (in milliseconds) are
scaled by base 2 logarithm in each of the following graphs.

Fig 4.1. Graph of CPU time comparison for Example 4.1

J_ 4.
XZ{XJ 22;—1.]—0,1,"',}7—1}
A Example 4.1.

as the set of sample points. We compute the CPU time
elapsed to calculate the sum

>

1} .
,...,— | as the given
n

N | =
W | —

In this example, we take f :(1,

input vector and
L(1)= Ef/p,(x/) foreach /[=0,1,---,n—1
j=0 .

X-{xi —cosﬂ:j—o,l,-u,n—l}

" Array length(n) | t(SA) t(FA)

] . 16 0.06 0.40

as the set of sample points. We compute the CPU time 32 0.09 0.45
elapsed to calculate the sum L(l):"ff/p/(x,.) for each 64 0.16 0.50
" 128 0.81 0.78

[=0L-n—1. 256 460 | 1.54

261

512 31.39 4.30
1024 245.81 | 14.94
2048 1891.50 | 56.34
4096 * 222.78
8192 * 908.36

Table 4.2. CPU times taken by each algorithm for

Example 4.2
25
-&-Straightforward Alg.
. | =*FastAlg
5 N
20 /
i
v
£15]
: / /
£
210 =
2
/I/l
5
4 5 6 7 8 9 10 11

the logarithm of array length(n)
Fig 4.2. Graph of CPU time comparison for Example 4. 2
V. CONCLUSION

This paper presents a fast algorithm to compute Legendre
polynomial transforms on set of arbitrary points. The heart
of the design of the algorithm is based on a linear three-
term recurrence satisfied by the Legendre polynomials
transforms and a theorem presented in Driscoll JR et.al. (1997.
We Ato
overflow/underflow such that :

introduce a scalar factor control

Zgn)(k):<fa(7bxj)kpl(xj)>: nffi(kxi)kpk(xi)'

For our computational purposes, we used

A=|X

, the Euclidean norm of X,

where Xz{xo,x1,~~-,xn_1} is the set of sample

points. This A may necessarily affect sample points to
control overflow and underflow for a considerable size
of array length. However, the problem which we now
have is that how to find a suitable value for A that fits
with a given problem. Formulating a criterion to find
an appropriate A that fits with a given Legendre
polynomial transform will be future interests of our
research work.

REFERENCES

Chihara TS (1957). “On co-recursive orthogonal polynomials,”
Proceedings of the American Mathematical Society, vol.
8, 899-905pp.

Cooley JW & Tukey JW (1965). “An algorithm for the machine
calculation of complex Fourier series,” Mathematics
of computation, vol. 19, 297-301pp.

Driscoll JR & Healy Jr DM (1989). “Asymptotically fast algorithms
for spherical and related transforms,” In Foundations
of Computer Science, 30th Annual Symposium , 344-
349pp, IEEE.

Driscoll JR & Healy DM (1994). “Computing Fourier transforms
and convolutions on the 2- sphere,” Advances in
applied mathematics, vol.15, 202-250 pp.

Driscoll JR , Healy Jr, DM & Rockmore DN (1997). “Fast discrete
polynomial transform with applications to data analysis
for distance transitive graphs,” SIAM Journal on Computing,
vol.26, 1066-1099 pp.

Gautschi W (1985).“Orthogonal polynomials—constructive theory
and applications,”.Journal of Computational and Applied
Mathematics, vol. 12, 61-76 pp.

Heideman MT, Johnson DH & Burrus CS (1985). “Gauss and
the history of the fast Fourier transform,” Archive
for history of exact sciences, vol.34, 265-277pp.

Inda MA, Bisseling RH & Maslen DK (2001). “On the efficient
parallel computation of Legendre transforms,” SIAM
Journal on Scientific Computing, no.23, 271-303pp.

Moore SS Healy Jr DM & Rockmore DN (1993).“Symmetry
stabilization for fast discrete monomial transforms
and polynomial evaluation,” Linear algebra and its
applications, vol. 192, 249-299 pp.

Potts D, Steidl G & Tasche M (1998). “Fast algorithms for
discrete polynomial transforms,”, Mathematics of
Computation of the American Mathematical Society,
vol. 67, 1577-1590 pp.

Potts D (2003). “Fast algorithms for discrete polynomial
transforms on arbitrary grids,” Linear algebra and its
applications, vol. 366, 353-370 pp.

Tang Z, Duraiswami R, & Gumerov NA (2004). “Fast algorithms
to compute matrix-vector products for Pascal
matrices”.

262

BIOGRAPHY OF AUTHORS

WA Gunarathna is a Mathematics lecturer (probationary) at
General Sir John Kotelawala Defence University, Ratmalana, Sri
Lanka. His research interests include design of efficient numerical
algorithms for polynomial transforms and numeric solutions of
diffrential equations. He is currently reading for an MPhill in
Mathematics at the Postgraduate Institute of Science (PGIS),
University of Peradeniya.

Nasir HM is a senior lecturer of Mathematics at the Department of
Mathematics, University of Perdeniya. He received Master of
Engineering (MEng) and PhD in Computational Mathematics, both
from the University of Electro-Communications, Tokyo, JAPAN in
1999 and 2003, respectively. His research interests include
numerical solutions of partial differential equations, and multi-

complex analysis.

263

